
‘C’ Scope

CHAPTER 1

‘C’ Basics

History of ‘C’

Before 1960 there were so many languages in

existence to solve the different types of problems. COBOL

was there for business related applications and FORTRAN

was used for mathematical applications. No common

language was there to solve all the problems. To solve this

problem, a committee came into existence which

introduced a new language ALGOL – 60 but it seemed very

abstract and general. To reduce this abstractness and

generality they came up with a new language named CPL

(Common Programming Language) but it was too hard to

learn because it was too specific and there were so many

drawbacks in this language. To remove these problems

BCPL (Basic common programming language) was made

by the Martin Richards of Cambridge University. But it

was less powerful and too specific. After this “B” language

was developed by Ken Thompson at AT & T Lab. It was

interpreter based and slow.

Dennis Ritchie of AT & T Bell Labs developed „C‟ with

some modifications in B language and BCPL.

(„C’ Language Was Developed by Dennis Ritchie of AT

& T Bell Laboratories in 1972.)

‘C’ Scope

Why ‘C’ is so powerful?

There are many reasons, and is mainly due to the fact that it

is a one man language which makes „C‟ a very powerful

language for programming

a. It has facilities of a high level language as well as

of low level language.

b. Rich in many functions.

c. „C‟ is machine independent and hence it‟s a

portable language.

d. It can be used for commercial as well for scientific

and Graphical works

e. It is also used in system programming.

f.

Different Versions of ‘C’

1. Microsoft „C‟

2. Ansi „C‟

3. Turbo „C‟

4. Quick „C‟

5. Borland „C‟

Among all the above versions only Ansi „C‟ is Unix Based

„C‟ and all others are DOS or windows based.

Introduction to Turbo ‘C’ IDE

Turbo C is an integrated development environment & a

compiler, developed by Borland company for C

programming.

‘C’ Scope

Turbo C version 1.0 was out in the market in 1987, which

was followed by versions 1.5 and 2.0, in 1989 it was the

most popular compiler for C, developed in MS-DOS

framework.

It is first IDE available for C platform. It was replaced by

Turbo C++ IDE in 1990.

Introduction to TURBO C++ IDE

Turbo C++ is a Borland C++ compiler with an integrated

IDE. Turbo C++ was a successor of Turbo C, expanding

the compiler functionality further.

Turbo C++ 3.0 was released in 1992, and came in amidst

expectations of the coming release of Microsoft Windows

3.1. Turbo C++ v3.0 first came as an MS-DOS compiler,

supporting C++ templates, generation of DOS & protected

http://www.codepedia.com/1/Borland
http://www.codepedia.com/1/Cpp
http://www.codepedia.com/1/CppCompiler
http://www.codepedia.com/1/CppCompiler
http://www.codepedia.com/1/Microsoft
http://www.codepedia.com/1/Cpp
http://www.codepedia.com/1/CppTemplate

‘C’ Scope

mode executables.

This menu help you to create a new file

or open an existing one and it also

provide option to save or print it.

While working in this compiler you can

also shift to DOS Prompt using DOS

Shell option

Here you will also find a Quit option to come out of the

compiler.

‘C’ Scope

 This menu helps in editing the

program, doing cut, copy, paste.

Also you can revert & redo the

changes done in our program.

 This menu helps in maneuvering

in the whole program.

 The run menu contains all the

options used for & during

execution of the program. Its

various options like Trace into

& Step over helps in tracing the

transfer of control in the

program.

‘C’ Scope

The Compile menu contains all

the options related with

compiling, linking & loading of

the program.

 This menu facilitates the user

to use various debugging tools

during removing errors from

the program. You can add

watches, breakpoints to your

code and also can evaluate the

code.

You can also make project in C

Language like in other

Language‟s environment, it

also supports making of .exe

file that is an executable file of

the whole project.

‘C’ Scope

In option menu various options

like changing compiler settings,

making changes in

Environment, applying options

of linking to Library files.

 This menu contains various

options for changing window

& screen options.

‘C’ Scope

 Help menu contains options to

access Turbo C++ IDE help.

Some general commands for the use in Turbo ‘C++’

IDE

F1 Help

F2 To Save

F3 Open an Existing File

Alt F3 To Close opened file

F5 Maximize

F6 Toggle between Windows

Alt F5 To go to the output Screen

^y To delete entire line

^t To delete a entire word

^Qy To delete rest of line

Alt+X To come out from „C‟ Ide

^F9 To compile and Run

F9 To compile

^qr To go to the beginning of file

^qc To go to the end of the file

^qf To find string

^qa To find and replace

Alt Enter To restore the window

Alt Backspace To Undo

^ins To Copy

Shift Insert To Paste

‘C’ Scope

Shift del To Cut

^del To Clear Screen (all)

^F1 For Help about Topics

‘C’ Character Set

Character set in „C‟ denotes all the characters that have

some valid meaning in „C‟, or contains any specific

meaning in „C‟ language.

All the valid characters in „C‟ are as follows.

Alphabets : A-Z , a-z.

Numerals : 0-9

Operators : - + * / % (MOD)

Special Symbols : {}(),.;” ‟ ~ ? : < > = & ^ | {[]

‘C’ Tokens

The smallest individual words with or without symbols that

contains some particular meaning in C language are called

C Tokens.

Variables / Identifiers

Variable are those meaningful names given to computer‟s

memory location that are used to store data. When using

variable you refer to memory location that contains data

value.

‘C’ Scope

Rules for Variable Naming

There are certain rules that have to be followed for naming

a variable.

1. A variable name can be up to 32 characters long.

2. Only first 32 characters are significant in variable

name. Like in valid variable names given below

contain (names

the_average_height_of_any_person_in_india ,

the_average_height_of_any_person_in_usa) when

taken in different program it would work, and iff

taken in the same program it would give error

because first 32 characters are same.

3. We can use main as a name of any variable.

4. Variable name is case sensitive, So variable name,

“age” is different from “AGE” .

5. It can be a combination of all alphanumeric

characters but it must start with any alphabet or

underscore.

6. Special symbols are not allowed while constructing

a variable name.

7. Spaces are not allowed in variable name.

8. Keywords are not allowed in a variable name. But

keywords of only C++ can be variables in „C‟.

9. Variable name can‟t be pre-defined variables of

included Header File.

These are the valid variables names

Check_num

_digit

pie1

‘C’ Scope

_int

val2

sno

x10

first_digit

Value_of_factorial

i_am_resident_of_india_in_the_universe

i_am_resident_of_india_in_the_uuniverse_in_rajasthan

Invalid variable names

2sum (variable name cannot start with a number)

d.val (dot . is not allowed in a variable name)

check sum (variable name cannot contain spaces)

long (variable name cannot use reserved words)

check%d!54 (variable name cannot include special

symbols)

EOF (varaible name can‟t be pre-defined

variables of included header file & this is

defined in stdio.h header file)

Keywords

The words that have predefined meaning in „C‟ are known

as key words also called as reserved words, and cannot be

used for other purpose in programming.

The listing of keywords or reserved words is given below

auto double int struct

break else long switch

case enum register typedef

char extern return union

‘C’ Scope

const float short unsigned

continue for signed volatile

default goto sizeof void

do if static while
Table 1) Shows Reserved Words

Escape Sequences

In „C‟ language the meaning of escape sequence is to

escape the normal meaning of a character. They are used

for non printable characters in a program.

\n New line \a Alert \v Vertical tab

\t Tab \f Form \‟ Single quote

\b Back space \r Carriage return \” Double quote

\? Question mark \\ Back slash \0 Null

Declaring variables in ‘C’

When we use any variable in any program we have to

declare them first and then only we can use it in our

program in „C‟. Syntax to declare any variable is given as

follows

datatype variablename1 , …… , variablename(n)

Data Types

Data type is used to declare that which type of data we are

going to use in our program. And according to the data type

the memory used by the variable is decided.

‘C’ Scope

A program usually contains different types of data types

(integer, float, character etc.) to store the values being used

in the program along with some library function and user

defined function (UDF) to process that stored data. „C‟

language is rich in data types and library functions. A „C‟

programmer has to employ proper data type as per

requirement.

„C‟ provides four fundamental data types.

1. int

2. char

3. float

4. double

The ranges for these data types are as under

Type Size

(bits)

Range

char or signed char 8 -128 to 127

unsigned char 8 0 to 255

int or short signed int 16 -32768 to 32767

short unsigned int 16 0 to 65535

long signed int 36 -2147483648 to

+2147483647

long unsigned int 36 0 to 4294967295

float 32 3.4E – 38 to 3.4E +38

double 64 -1.7e308 to +1.7e308

long double 80 -1.7e4932 to +1.7e4932

Integer Datatype

http://rajkishor09.hubpages.com/_gsm/hub/C-Programming-Lesson-Library-Functions-in-C
http://rajkishor09.hubpages.com/_gsm/hub/What-is-Function-How-to-Declare-it-in-C-Part-1
http://rajkishor09.hubpages.com/_gsm/hub/What-is-Function-How-to-Declare-it-in-C-Part-1

‘C’ Scope

An integer consists of a sequence of digits having optional

signs (+) or (-). It does not contain the comma (,) or

decimal (.).It can be declared & initialized as follows.

int x=5;

int y=-8;

(The maximum value that can be stored in an integer

variable is 32767. If you try to exceed this by 1 it will take

the value –32768)

Character Datatype

It consists of ASCII character enclosed in a pair of

apostrophes. It occupies 1 byte of memory and it can be

signed or unsigned. The range of signed character is –128

to 127 and for unsigned it is 0 to 255. Within this range a

character data behaves like integer data and vice versa. By

this I mean to say that we can get an integer ASCII

equivalent of any character in this range.

Here are some characters data types.

char ch=‟a‟;

char x=‟5‟;

char y=‟/‟;

Float Datatype

It consists of a sequence of digits and a decimal. It is

necessary to put a decimal in floating point or real number.

It occupies 4 bytes of memory. Here are some floating

point examples.

‘C’ Scope

float salr=4500.50;

float temp=45.63;

We can change the range of data using some modifiers

these modifiers are

1. unsigned

2. long

3. short

4. signed

unsigned

The unsigned tells the compiler not to use the most

significant bit. Using this keyword we can increase the

range to represent a large value.

long

Using this we can use 32 bits to represent the integer value.

short

If long data type modifier doubles the size, short on the

other hand reduces the size of the data type to half. Please

refer to the example of age variable to explain the concept

of data type modifiers.

signed

By default all data types are declared as signed. Signed

modifier means that the data type is capable of storing

negative or positive values.

‘C’ Scope

Structure of sample ‘C’ Program

Header File Inclusion

Global constants & types

Program heading

Main Function & its type

 Local Declarations

 Executable Statements

 Return Statements

End of Main Function

Operators

An operator tells the compiler to perform some specific

task using operands. Just like mathematical operators (+,-

,/,-*) „C‟ offers some more operators for you. Now let‟s see

what are these?

1. Arithmetic operators

2. Unary operators

3. Assignment operators

4. Conditional or Ternary operators

5. Relational operators

6. Logical operators

7. Bit wise operators

8. Special operators

1. Arithmetic operators

Several mathematical operators in „C‟ just like normal

mathematical operators do.

‘C’ Scope

There are 5 arithmetic operators in „C‟ these are

i.) + Addition

ii) - Subtraction

iii) * Multiplication

iv) / Division

v) % Modulus

For arithmetic operators operands can be integer quantities,

real number, or character. For Modulus (%) operator both

the operands must be numerals and the second operand

must be nonzero. Similarly, for the division operator (/) the

second operand must be non-zero.

(Note: There is no operator in „C‟ that can be used for exponentiation.

A function pow() is available for exponentiation).

Now I think there is no need to explain these operators

because you are using these operators from your school

life.

2. Unary Operators

These operators act on only one operand.

a. Unary Plus(+)

b. Unary Minus(-)

c. Increment (pre and post) ++

d. Decrement (pre and post) --

Most commonly used operator is the unary minus, where a

numerical constant, variable or expression is preceded by a

minus sign. It is same as the arithmetic subtraction operator

‘C’ Scope

but arithmetic (-) operator requires two operands and unary

(-) operator requires only one operand for operations.

There are two other commonly used unary operators and

these are increment (++) and decrement operator (--). These

operators are used to increase or decrease the value of

variable by 1.

We can understand the difference between the pre and post

increment or decrement operators using following program

segments

 the output would be 11 the output would be 10

In first program segment the value of x would be 11 and in

second program segment the output is 10. Because for the

first example in first line the value of x is ten in next line it

will be increased by one the value of x will be 11 which

will be printed in third line.

For second example in first line the value of x is 10, in

second line first the operation will be performed i.e the

value of x will be printed which is ten and then it will be

increased by one.

Like this we can also understand the differences between

the pre and post operators by the following example:-

Example of pre operator:-

x=10;

x++;

printf (“%d”,x);

x=10;

printf (“%d”,x++);

‘C’ Scope

#include<stdio.h>

main()

{

 int x,y;

 clrscr();

 x=5;

 y=++x; // Pre operator

 printf("%d",y);

 getch();

 }

The answer will be 6

So, pre increment or decrement operators first increase or

decrease the values and then perform other operations,

whereas post increment or post decrement first perform the

other operation and in next the values increased or

decreased by one.

3. Assignment Operators

There are two types of assignment operators

i Normal Assignment operators

ii. Compound Assignment operators

i) Normal assignment operator: It is most

commonly used operator which uses (=) sign

which works exactly the same way the equal

symbol does in mathematics.

E.g.

x=10;

‘C’ Scope

The value 10 will be assigned to the x;

a=b=c=10;

Here assignments are performed form the right

to the left, first 10 will be from c to b to a;

ii) Compound Assignment operators : In „C‟

language there are several compound

assignment operators.

To understand these compounds assignment

operators first look at the following program

segment

x=5;

x=x+20;

Now I can make this code shorter in a way like

x=5;

x+=20;

Which is just shorter than the first case because

we are using a compound assignment operators

(+=) to make it shorter. That is why they are

also called as Shorthand Assignment Operators.

This type of combination can be used with other

operators some of these are

+= Addition Assignment

-= Subtraction Assignment

*= multiplication Assignment

/= Division Assignment

%= Mod Assignment

<<= Left Shift Assignment

‘C’ Scope

>>= Right Shift Assignment

&= Bit wise and Assignment

|= Bit wise OR Assignment

^= Bitwise XOR Assignment

4. Ternary Operators (Conditional Operators) ? :

If in any program we have to give a condition and based on

that condition our program should behave accordingly that

is if the condition proves out to be right then certain set of

statements should be executed otherwise another set of

statements should be executed. For this problem „C‟ has a

solution named Conditional Operators.

It contains three expressions. The conditional operator tests

the first expression which is a condition in fact, if it is true

then the resulting value is that of the second expressions.

Otherwise, the resulting value is that of the third

expressions. To understand the conditional operators look

at the following program segment.

a=5;

b=10;

a > b ? printf (“New York”) : printf (“Washington”) ;

in the given segment first expression is false hence the

result will be Washington.

a=50;

b=20;

c=a>b? 10: 40;

in the given segment the first expression is true so the value

assigned to c will be 10.

‘C’ Scope

Now we can make the general form of conditional operator

as

Conditional expression? expression 2 : expression 3;

There can be nested conditional operators to solve complex

decisions.

per >= 60 ? printf ("First Division ") : per >= 45 ? printf

("Second Division ") : per >=33 ? printf ("Third ") : printf

("Failed ");

The above example shows nesting of three conditional

operators ie if any student scores percentage more than 60,

first statement will be followed, otherwise goes to next

condition now tests for percentage above 45 & at last above

33 & above, if all the conditional expressions results false

then the snippet prints “Failed”

5. Relational operators

These Operators compare expressions and returns the true

or false values decided by the relative values of the

expressions and the operators used, and these operators are

used to check the conditions.

i. < Less than

ii. > Greater than

iii. <= Less than or equal to

iv. >= Greater than equal to

v. == Equal to

vi. != Not equal to

‘C’ Scope

(Note: - Unlike other languages use double (=) sign for

comparisons)

You should know that there lies a difference between

equivalence sign(=) & relational equal to (==) operator,

where the former is used for assigning values to variables

and the later is used for condition matching. Let‟s see an

example for this

#include<stdio.h>

void main()

{

 int a;

 clrscr();

 (a=5) ? printf("value of a is five") : printf("a is not

five");

 getch();

}

#####OUTPUT#####

value of a is five

In the above example the output comes out to be five

because the first expression assigns value of 5 to a, and

because this instruction is carried out flawlessly by the „C‟

compiler so it (compiler) returns true & because of true

returning the first expression is shown as result.

Instead of 5 if any other number would be there, the result

would have been the same. If we really want to check the

equality, we can offer the set of statements

#include<stdio.h>

‘C’ Scope

void main()

{

 int a=5;

 clrscr();

 (a==5) ? printf("value of a is five") : printf("a is not

five");

 getch();

}

######OUTPUT######

value of a is five

Here the value 5 is first assigned to a, and then value of 5

and value of a are compared resulting in true or false block

statement as a result, unlike the above one where always

the true block statement will be executed.

6. Logical Operators

If you want to test more than one condition and to go for a

decision, there are some logical operators offered by „C‟ for

you.

These three logical operators are.

i. && logical (AND)

ii. || logical (OR)

iii. ! logical (NOT)

(Note : Do not confuse with & and && single ampersand

or single pipe signs are not used for logical decisions they

have the special meaning which we will discuss further).

You can better understand these operations with the

following truth table.

‘C’ Scope

expression 1 expression 2 exp1 && exp2 exp1 | | exp2

true true true true

true false false true

false false false false

false true false true

char x;

printf(“Type y or Y for yes”);

x=getchar();

(x==‟y‟ || x==‟Y‟)? printf(“Okay”) : printf(“Not Okay”);

The above code first takes a character input from user &

checks it for yes, the character entered should be either „y‟

or „Y‟, if the cumulative condition given proves the snippet

prints “ Okay ” otherwise prints “ Not Okay ”.

7. Bitwise Operators

Bitwise operators in „C‟ Language are used to operate on

bit of any number used in the program. It is a fast, primitive

action directly supported by the processor, and is used to

manipulate values for comparisons and calculation on the

bit level.

There are six types of Bitwise Operators

i) Bitwise OR |

ii) Bitwise AND &

iii) Bitwise XOR ^

iv) Bitwise NOT ~

v) Bitwise Shift Left <<

vi) Bitwise Shift Right >>

i) Bitwise OR (|)

http://en.wikipedia.org/wiki/Central_processing_unit

‘C’ Scope

The bitwise OR operator is used to operate logical

OR operation on bit level. The OR operation truth

table is explained in previous section within Logical

Operators. Now, we would see how it works

Let us assume,

 A = 6 /* 0000 0110 */

 B = 8 /* 0000 1000 */

Then its Bitwise OR operation would result in

A | B /* 0000 1110 */ i.e 14

ii) Bitwise AND (&)

The bitwise AND operator is used to operate

logical AND operation on bit level. The AND

operation truth table is explained in previous

section within Logical Operators. Now, we

would see how it works

Let us assume,

 A = 6 /* 0000 0110 */

B = 8 /* 0000 1000 */

Then its Bitwise OR operation would result in

A &B /* 0000 0000 */ i.e 0

iii) Bitwise XOR (^)

The bitwise XOR operator is used to operate

logical XOR operation on bit level. The XOR

operation truth table is as follows.

X Y X^Y

0 0 0

0 1 1

1 0 1

‘C’ Scope

1 1 0

Let us assume,

 A = 6 /* 0000 0110 */

B = 8 /* 0000 1000 */

Then its Bitwise OR operation would result in

A ^B /* 0000 1110 */ i.e 14

iv) Bitwise NOT (~)

The bitwise NOT operator is used to operate logical

NOT operation on bit level. The NOT operation

truth table is explained in previous section within

Logical Operators. Now, we would see how it

works.

Let us assume,

 A = 6 /* 0000 0110 */

Then its Bitwise OR operation would result in

~A /* 1111 1001 */

v) Bitwise Shift Left <<

Bitwise Shift left operator is used to operate on bit

level . This operator shifts the bits of a number one

position at a time towards left.

The operation x << n shifts the value of x left by n

bits.

Let's look at an example. Suppose x is a char and

contains the following 8 bits.

If A = 11000111

Now A<<3 would be

‘C’ Scope

 00011100

vi) Bitwise Shift Right >>

Bitwise Shift right operator is used to operate on bit

level. This operator shifts the bits of a number one

position at a time towards right.

The operation x >> n shifts the value of x right by n

bits.

Let's look at an example. Suppose x is a char and

contains the following 8 bits.

If A = 00111100

Now A>>2 would be

 00001111

8. Special Operators

The special operators in „C‟ does the works are related to

memory processing.

There are two types of special operators that are used in „C‟

Language.

i) sizeof Operator

ii) Address Operator

i) sizeof operator

The sizeof operator gives the amount of storage, in

bytes, required to store an object of the type of the

‘C’ Scope

operand. This operator allows you to avoid

specifying machine-dependent data sizes in your

programs.

sizeof unary-expression

sizeof (type-name)

ii) Address operator

The address of operator is used to find the memory

pointer location used by any variable. The symbol

used for this operator is „&‟. But you will think how

come the Bitwise operator(&) can be used for this

purpose. But it is unary operator and can be used

with only one operand. Like

&variable_name;

Type casting in ‘C’

If at any time in our program we want to do certain

calculations using different datatype variables then „C‟

language helps us in casting of one variable of some

datatype into another higher datatype, whose variable is

used in the expression.

Let us see an example…

void main()

{

 int rate=5,time=2;

 float principal=5000.00,si;

 clrscr();

 si = (principal * rate * time)/100.00;

‘C’ Scope

 printf("Simple interest is %f",si);

 getch();

}

OUTPUT #####

Simple interest is 500.000000

In the above example rate & time variable of integer

type implicitly change to float datatype to participate in

the expression. This is called implicit typecasting which

is done implicitly by the „C‟ compiler.

Typecasting is simply a mechanism by which one can

change the data type of a variable, no matter how it was

originally defined. When a variable is type casted into a

different type, the compiler basically treats the variable

as of the new data type.

When the compiler does not perform the typecasting

implicitly but we want that the variable should behave

according to the different data type required/mentioned

by the user, and then we have to perform explicit

typecasting.

Syntax for performing that is

 (datatype) variable_name

The previous example if done with explicit typecasting

then

void main()

{

‘C’ Scope

 int rate=5,time=2;

 float principal=5000.00,si;

 clrscr();

 si = (principal * (float)rate * (float)time)/100.00;

 printf("Simple interest is %f",si);

 getch();

}

OUTPUT #####

Simple interest is 500.000000

Note: variables of lower datatypes can be typecasted

into higher order datatypes but vice versa is not

supported. Here higher datatype to lower datatype

typecasting is not supported because higher datatype

variable covers more bytes in memory, and that value

can‟t be accommodated into less memory occupied by

lower datatype variable.

For example, a float variable cannot be typecasted into

integer datatype because float covers 4 bytes in memory

& integer covers 2 bytes only, so how „C‟ can support

data loss while casting.

Summary

 „C‟ Language Was Developed by Dennis Ritchie of

AT & T Bell Laboratories in 1972.

 Turbo C is an integrated development environment

& compiler developed by Borland to program in C

‘C’ Scope

Language. Turbo C version 1.0 was out in the

market in 1987.

 Character set in „C‟ denotes all the characters that

have some valid meaning in „C‟

 The smallest individual words with or without

symbols that contains some particular meaning in C

language are called C Tokens.

 Variables refer to memory location that contains

data value.

 The words that have predefined meaning in „C‟ are

known as key words also called as reserved words

 Escape sequence is to escape the normal meaning of

a character and is used for non printable characters

in a program.

 Typecasting is simply a mechanism by which one

can change the data type of a variable, no matter

how it was originally defined.

Self Review

Q1. Write C Expressions corresponding to following

arithmetic expressions

a.

 -

b. 9x
5
 + 4x

4
 – 7x

3
 + 2x

2
 – 8x + 12

c.
4x+ b

c
+

 y-3a

3f
-

2e

bf

Q2. Evaluate the expressions

a. int a=4 , b=5 , c=8;

a + = b++ / c%b;

a * = c++* a-- + --b;

b% = ++b * c/2;

‘C’ Scope

b. int j , k , l;

j = (k=9 , l=3 ,k+l);

k = ++j / 9 * l % 2 + k--;

l*=--j/k+j*k--;

Q3. Program to convert

a. Celcius into farenhiet (Hint c/5f-32/9)

b. Kilogram into pounds (Hint 0.45359Kg = 1

Pound)

c. Yards into miles (Hint 1 mile = 1760

Yards)

d. Miles into Kilo metre (Hint 1mile =

1.60934Km)

Q4. Program to calculate circumference & area of a

circle & a rectangle. (Given length & breadth of

rectangle & radius of circle.)

Q5. Program to calculate surface area and volume of

a. Cuboid

b. Cube

c. Cylinder

d. Sphere

e. Cone

‘C’ Scope

CHAPTER 2

INPUT/OUTPUT

 STATEMENTS IN ‘C’

Input and Output Statement can be categorized in two

categories

1. Unformatted I/O Functions

2. Formatted I/O Functions

Unformatted I/O

Character based I/O

For character based input, the available functions are

getchar(), getche(), getch() and for output the available

functions are putchar(), putch()

getchar();

getchar () is a macro that reads a single character from a

standard input device i.e. keyboard.

The syntax is

ch=getchar();

‘C’ Scope

#include <stdio.h>

main()

{

 char ch;

 printf (“Enter a character : “);

 ch=getchar();

 putchar(ch);

}

OUTPUT #####

Enter a character : m

m

Enter any character : raju

r

Note : It accepts only a single character as in above example when we type raju

it accepts only r which is first character

getche()

It reads a single character given from the keyboard and

echoes to the current text window and there is no need to

press enter.

#include <stdio.h>

main()

{

 char ch;

 printf (“Enter a character : “);

 ch=getche();

 putchar(ch);

}

‘C’ Scope

OUTPUT #####

Enter a character : m

m

Enter a character : b

b

getch()

It reads a single character from keyboard without echoing

(display) it to the screen.

Syntax :

ch =getch();

Example

#include <stdio.h>

main()

{

 char ch;

 printf (“Enter a character : “);

 ch=getch();

 printf (“\n”);

putchar(ch);

}

OUTPUT #####

Enter a character :

M

Enter a character :

B

‘C’ Scope

In above example as we press any key it accepts the

character without displaying the entered character.

getc();

It is a macro which is used to read a character from file as

well as from standard input device

ch=getc(stdin);

main()

{

 char ch;

 printf (“Enter a character : “);

 ch=getc(stdin);

 printf (“\n”);

putchar(ch);

}

OUTPUT #####

Enter any character : m

M

Enter any character : b

B

Character Based Output

putchar()

putchar() is a macro that outputs a character to the standard

output device i.e. Monitor

‘C’ Scope

Syntax :

putchar(Variable);

Example:

main()

{

 char ch;

 printf (“Enter a character : “);

 ch=getc(stdin);

 printf (“\n”);

 putchar(ch);

}

OUTPUT #####

Enter any character : m

m

Enter any character : b

b

putch();

Outpts character to the text window on the screen and it

does not translate linefeed character(\n) into carriage-

return/linefeed combination

Syntax :

putch(Variable);

Example:

main()

{

 char ch;

‘C’ Scope

 printf (“Enter a character : “);

 ch=getc(stdin);

 printf (“\n”);

 putch(ch);

}

Enter any character : m

m

Enter any character : b

b

Here in above program the output is same as the putchar

example but while using for a file putchar convert the

newline(\n) character into carriage-return and linefeed

combination, whereas putch() does not convert the same. It

treat the newline as a newline only.

Let us see the output of the following program using

putchar() and putch() separately

#include <stdio.h>

main()

{

 FILE *fp;

 char ch;

 clrscr();

 fp=fopen("scope.txt","r");

 ch=getc(fp);

 while (ch !=EOF)

 {

 putchar(ch);

 ch=getc(fp);

 }

‘C’ Scope

 getch();

}

OUTPUT #####

This is a book.

It is published by Scope.

It was written by Nishat.

It is based on the 'C' Fundamentals.

#include <stdio.h>

main()

{

 FILE *fp;

 char ch;

 clrscr();

 fp=fopen("scope.txt","r");

 ch=getc(fp);

 while (ch !=EOF)

 {

 putch(ch);

 ch=getc(fp);

 }

 getch();

}

OUTPUT #####

This is a book.

 It is published by Scope.

 It is written by Nishat.

It is based on the 'C' Fundamentals.

‘C’ Scope

putc()

It is a macro which sends the output to a stream

Syntax :

putc(variable,stream);

Example :

#include <stdio.h>

main()

{

 char ch;

 clrscr();

 printf ("Enter any character : ");

 ch=getchar();

 putc(ch,stdout);

}

OUTPUT #####

Enter any character : t

t

printf ()

We can also print the value of a character using printf

Syntax :

printf (“%c”,variable);

‘C’ Scope

String Based I/O

gets()

Waits for user response and accepts a string of characters

terminated by newline and given from the keyboard. It

replaces the newline character by a character „\0‟ called as

NULL. Inside the string it also allows the whitespaces.

Syntax :

gets(str)

Example :

#include <stdio.h>

main()

{

 char str[50];

 printf (“Enter a string of characters : “);

 gets(str);

 printf (“\n The given string is : %s “,str);

}

OUTPUT #####

Enter a string of characters: Scope Computer Education

The given string is: Scope Computer Education

Accepting a string using scanf ()

Syntax :

Scanf (“%s”,str);

‘C’ Scope

Example :

#include <stdio.h>

main()

{

 char str[50];

 printf (“Enter a string : “);

 scanf (“%s”,str);

 printf(“The given string is : %s ”,str);

}

OUTPUT #####

Enter the string : Scope Computer Education

The given string is : Scope

When we use scanf() to accept a string it does not allow the

whitespaces inside the string so the output would be Scope

only.

String Based Output:

puts()

It gives the output of a string to standard output device i.e.

Monitor, and also appends a new line character at the end

of a string.

Syntax :

puts(str);

Example :

#include <stdio.h>

main()

‘C’ Scope

{

 char str[50],str1[50];

 printf (“Enter a string :”);

 gets(str);

 printf (“Enter the second string : “);

gets(str1);

puts(str);

puts(str1);

}

OUTPUT #####

Enter a string : Scope Computer Education

Enter the second string : Jodhpur Rajasthan

Scope Computer Education

Jodhpur Rajasthan

Output of a string using printf()

While printing the output of a string using printf() it sends

the output to standard output device Monitor but unlike

puts() it does not add a new line character at the end of a

string.

Enter a string: Scope Computer Education

Enter the second string: Jodhpur Rajasthan

Scope Computer Education Jodhpur Rajasthan

Formatted Input using scanf() Function

Formatted input means an input data arranged format. The

field or format specifier can contain an optional weight.

‘C’ Scope

This field width specifier is optional i.e no restriction to use

these kind of specifier but by employing them we can

easily take the input required by our program.

The field specification can be given as

% w format_string

Let‟s see an example,

#include<stdio.h>

main()

{

 int a,b,c;

 clrscr();

 printf("\n Enter the nine digit number \n");

 scanf("%3d %3d %3d",&a,&b,&c);

 printf("\n Given number is \n");

 printf("%d-%d-%d",a,b,c);

 getch();

}

OUTPUT #####

 Enter the nine digit number

1213456789

 Given number is

121-345-678

Formatted output using printf() function

Likewise formatted input formatted output can be also be

shown according need of the user.

‘C’ Scope

Let us see a code regarding this

#include<stdio.h>

void main()

{

 float a,b,c;

 clrscr();

 printf("\n Enter the number \n");

 scanf("%f %f %f",&a,&b,&c);

 printf("\n Given number is \n");

 printf("%0.2f-%0.5f-%3.2f",a,b,c);

 getch();

}

OUTPUT #####

 Enter the number

789.3456

5123.3426

55555.689

 Given number is

789.35-5123.34277-55555.69

Summary

 For character based input, the available functions

are getchar(), getche(), getch() ,gets().

 For output the available functions are putchar(),

putch() , puts() .

‘C’ Scope

 There are also other functions like printf() and

scanf() for printing/Displaying the output or

message on the execution screen and for taking the

input from user.

Self Review

Q1. What is the difference between getch() and

getche()?
Q2. What is the difference between putch() and

putche() ?
Q3. What do you mean by formatted input and output.

Explain with the help of example ?

‘C’ Scope

CHAPTER 3

CONDITIONAL CONSTRUCTS

Students if you want to execute a statement or a set of

statements only when certain conditions are true or to

execute some other statements when the same conditions

are false.

There are five constructs used in „C‟ for employing these

conditions.

1. if

2. if… else…

3. if ... elseif … elseif ….. else

4. Nested if

5. switch … case

1. if

Suppose if you want to execute a part of program if a

particular condition is true then we can enclose these

statements within a pair of { }.

if (condition)

{

Statement1;

Statement 2;

 .

 .

 .

Statement n;

}

‘C’ Scope

Let us see an example,

#include<stdio.h>

main()

{

int i=10;

 if(i > 5)

 printf (“JACK”);

getch();

 }

 #####OUTPUT#####

 JACK

In the program below, segment it will not print anything

because first the value of i will be initialized with 10 and

then it will check the condition here i is not less than 5 so it

will not go to the part enclosed in the pair of curly bracket.

NOTE: Inside the true block if there is only one statement

to be executed the we don‟t have the need to put curly

braces ({}).

#include<stdio.h>

main()

{

 int i=10;

 if(i < 5)

 printf (“JACK”);

 getch();

 }

‘C’ Scope

 #####OUTPUT#####

 None

ii. if…else…

In the program explained in previous section the output was

JACK what if the condition results false, the output was

nothing. If we want certain statements to be executed based

on false condition then use else extension of if construct.

if (condition)

{

 Statement 1;

 Statement 2;

 .

 .

 .

 Statement n;

}

else

{

 Statement 1;

 Statement 2;

 .

 .

 .

 Statement n;

}

Let‟s see an example

‘C’ Scope

#include<stdio.h>

main()

{

 int i=10;

 if(i < 5)

{

 printf (“JACK”);

 }

else

{

 printf (“JILL”);

}

getch();

 }

 Run part of above program

 JILL

The above program segment will print the JILL because

given condition is not true so the control will enter to the

else part of the program and hence JILL will be printed.

So in another way we can say the control enter the first part

of the program if the given condition is true otherwise it

goes to the else part of the program.

Let us see another program segment

Ex. 1.

Calculate the net income of an employee, where employee can be

clerk or other, if clerk his ta,da, hra will be 3,3.5,4 respectively,

and for others it is 4,4.5,5 respectively

‘C’ Scope

#include<stdio.h>

void main()

{

 float salary,ta,da,hra,tot_income;

 char desig;

 clrscr();

 printf("\n Enter the salary of a person : \t");

 scanf("%f",&salary);

 fflush(stdin);

 printf("\n Enter 'C' for Clerk and other for others :

\t");

 scanf("%c",&desig);

 if((desig=='C')||(desig=='c'))

 {

 ta=(3.0*salary)/100;

 da=(3.5*salary)/100;

 hra=(4.0*salary)/100;

 tot_income=salary+ta+da+hra;

 }

 else

 {

 ta=(4.0*salary)/100;

 da=(4.5*salary)/100;

 hra=(5.0*salary)/100;

 tot_income=salary+ta+da+hra;

 }

 printf("The total income for you is : \t

%f",tot_income);

 getch();

}

#####OUTPUT#####

‘C’ Scope

Enter the salary of a person : 10000.00

Enter 'C' for Clerk and other for others : c

The total income for you is : 11050.000000

iii. if…. elseif…. elseif…. else…

If we have more than one condition to check then we can

use if … elseif … elseif… else construct.

Ex. 2.

Print the Grade of a student based on percentage

#include<stdio.h>

main()

{

 int tmarks;

 printf (“Enter total marks : “) ;

 scanf (“%d”,&tmarks);

 if (tmarks >= 60)

{

 printf (“First Division : “);

 }

 else if (tmarks >=48)

{

 printf (“ Second Division :”);

 }

 else if (tmarks >= 36)

 {

 printf (“Third Division :”);

 }

 else

‘C’ Scope

 {

 printf (“Failed : “);

 }

getch();

}

#####OUTPUT#####

Enter total marks : 65

 First Division :

Enter total marks : 56

 Second Division :

Enter total marks : 37

 Third Division :

Enter total marks : 25

 Failed :

Above program segment will print the division according to

the total marks. i.e its first condition will be checked if it is

true then First division will be printed and if first condition

is false then second condition written with else if will be

checked if it is true then Second Division will be printed

and if second condition is false then the third condition

written with next elseif and so on….

If it finds all conditions as false then else block will be

executed.

This construct is also known as if – else – elseif - else

ladder.

iv. Nested if construct

In else – if ladder we can only put conditions again and

again inside else block. But what if too many conditions are

‘C’ Scope

to be satisfied for single block of statements to be executed.

Here in this construct we can nest the conditions within

some conditions.

Let us see an example for this construct,

Ex. 3.

Print the Largest out of three numbers

#include<stdio.h>

void main()

{

 int a,b,c;

 clrscr();

 printf("\n Enter the three numbers \n");

 scanf("%d",&a);

 scanf("%d",&b);

 scanf("%d",&c);

 if(a>b)

 {

 if(a>c)

 printf("\n a is largest");

 else

 printf("\n c is largest");

 }

 else

 {

 if(b>c)

 printf("\n b is largest");

 else

 printf("\n c is largest");

 }

‘C’ Scope

 getch();

}

OUTPUT #####

 Enter the three numbers

10

11

16

 c is largest

 Enter the three numbers

10

12

8

 b is largest

 Enter the three numbers

12

8

10

 a is largest

v. Switch statement

It is the multiway decision construct and is the alternative

statement for if .. else if .. else construct.

It tests the value of a given variable or expression and

switch over to the specific case, there it executes all the

statement with in the boundary of switch till it does not get

the break; statement.

‘C’ Scope

If it does not match the value in any case then control goes

to the default case.

The syntax of the switch statement is :-

switch(variable)

{

 case value1 :

 break;

 case value2 :

 break;

 case value 3 :

.

.

case value n :

 break;

default :

}

The break statement is here used to jump out of the switch

whenever any case is matched against value of switch

variable so that the compiler time is not wasted roaming

other statements unnecessarily.

‘C’ Scope

First let‟s see the following example using if.. else if ..else

construct

#include<stdio.h>

main()

{

 int i;

 printf (“Enter the value of i “);

 scanf (“%d”,&i);

 if (i==1)

 printf (“SCOPE”);

 else if (i==2)

 printf (“NSD”);

 else

 printf (“Out of range :”);

getch();

}

here is the output

Enter the value of i : 1

 SCOPE

 Enter the value of i : 2

 NSD

Enter the value of i : 4

 Out of range

The above program can be written using switch statement

which is more convenient and easy to understand.

#include <stdio.h>

main()

‘C’ Scope

{

 int i;

 printf ("Enter a number : ");

 scanf("%d",&i);

 switch(i)

 {

 case 1 :

 printf ("Scope\n");

 break;

 case 2 :

 printf ("NSD\n");

 break;

 default :

 printf ("Out of range : \n");

 }

 getch();

}

OUTPUT #####

Enter a number : 1

Scope

Enter a number : 2

NSD

Enter a number : 4

Out of range :

In above example as we enter the value of i as 2 the control

switch over to the second case and it print the NSD and

when we enter the value as 4 the control goes to the default

case. It can be considered as the else part of if .. else if ...

else construct.

‘C’ Scope

Ex. 4.

Program to demonstrate switch statement

#include <stdio.h>

main()

{

 int i;

 printf ("Enter a number : ");

 scanf("%d",&i);

 switch(i)

 {

 case 1 :

 printf ("Scope\n");

 case 2 :

 printf ("NSD\n");

 default :

 printf ("Out of range : \n");

 }

 getch();

}

OUTPUT #####

Enter a number : 1

Scope

NSD

Out of range :

Enter a number : 2

NSD

Out of range :

Enter a number : 3

Out of range :

‘C’ Scope

In above program we have not used break; statement, so

when we use the value of i as 1 then control passes through

all the statement of all cases including the default case.

When we use the value of i as 2 then the control switches

over to the second case and from second case it passes

through all the statement of switch. This property of falling

through till it does not get the break statement is knows as

fall through property.

Summary

There are five constructs used in „C‟ for employing these

conditions , if , if… else…, if ... elseif … elseif ….. else ,

Nested if, switch … case.

If you want to execute a part of program if a particular

condition is true then you can use a simple if construct.

If we want certain statements to be executed based on false

condition then use else extension of if construct.

If we have more than one condition to check then we can

use if … elseif … elseif… else construct. It is also called as

If – else – ladder because the programme flow appearance

looks like ladder case.

If too many conditions are to be satisfied for single block

of statements to be executed, we can nest the conditions

within if - else conditions. This is also called as Nested If

construct.

‘C’ Scope

Switch is the multiway decision construct and is the

alternative statement for if .. else if .. else construct. It

checks for the variable or expression in switch() for

tautology

Self Review

Q1. Write a program to detect whether the given

number is odd or even?

Q2. Write a program to find whether the given integer is

positive or negative?

Q3. Write a program to find largest among 2 integers,

three integers, 4 integers?

Q4. Write a program to find whether the given year is a

leap year or not?

Q5. Write a program to find today is which day of the

year?

Q6. Write a program to find whether the given angles of

triangle are valid or not(Hint: sum of three angles

of triangle is 180)

Q7. Write a program to check which key is pressed of

keyboard, whether it is digit,symbol, capital or

small alphabet?

Q8. Write a program to calcualate Electricity if

following is the criteria

Units consumed Rs. Per unit

Below 100 1 Rs.

101 – 300 1.5 Rs.

301 – 500 2.0 Rs.

501 – 1000 3.0 Rs.

1000 & Above 3.5 Rs.

‘C’ Scope

Also the compulsory charges according to the

category i.e for domestic its 180 Rs., for

commercial it is 360 Rs.?

Q9. Write a program to check whether the given point

p(x,y) is in which quadrant?

Q10. Write a program that inputs time of the day & prints

Greeting for the user accordingly ?

Q11. Write a program to find that today is which day of

the year i.e for example 15
th

 Feb is 46
th

 day of the

year?

Q12. Write a program to find difference between two

dates ?

Q13. Write a program to compute the TDS deducted from

salary of employee if the salary is taken by the user

and the tax percentage depends on income tax slab

system ?

Q14. Write a program to find out the grade of student

based on his marks in 5 subjects;

80% and above A Grade

60% - 79% B Grade

40% - 59% C Grade

39% or Below D Grade

‘C’ Scope

CHAPTER 4

LOOPS

Loops are the constructs used to execute the part of a

program repeatedly.

There are three types of loops in „C‟

i. for loop

ii. while loop

iii. do .. while loop

i. for loop

In for loop first we give the initial value and then it checks

the condition, if the condition is true then it enters the loop

and execute all the statement inside the curly brackets and

after this it goes to the third part that is changing variable

value and it again checks the conditions. In this way it runs

till the condition is true.

When the condition becomes false it comes out of the loop.

The general form of for loop is

for(initial value; condition check; re initialization part)

{

 body of the loop

}

‘C’ Scope

for(initialization; terminating condition; increment/ decrement step)

{

 Body of the loop

}

for (i=0;i<10;i++)

{

 printf (“\n%d”,i);

}

steps for this loop is as follows

1. i=0 this will set the initial value of i to zero.

2. control will transfer to the second part i<10 and

check the condition wheather it is true of false. This

time condition is true. so the control will be entered

to the body of the loop.

3. statement printf (“\n%d”,i); will be executed and the

value of i will be printed first it will print 0.

4. after the execution of all the statement of the body

of the loop control will transfer to

increment/decrement part i++ the value of i will be

incremented it will become 1.

5. now again the transfer of control goes for checking

the termination condition, if it is true enters the

body of the loop, executes the statements written

there, if it is false the transfer of control jumps to

the next statement given after the closing brace of

loop.

6. In this way in the program the loop will workform

i=0 till i<10 ie i=9 & prints numbers from 0-9.

‘C’ Scope

This program segment will first set the initial value of i to 0

and then it will check the condition which is true this time

(0 is less than 10), so it will enter into the body of the loop

where it will print the value of i i.e. 0 (execute all the

statement inside the body of the loop) then it will go to the

reinitialization part and increase the value of i to 1, and

then after this it will again check the condition it is true

again so it will reenters to the body of the loop and repeat

the same procedure till the condition is true.

The output of the above segment would be

0

1

2

3

4

5

6

7

8

9

Ex. 1.

Program to print the temperature conversion table that

shows fahrenhiet & centigrade values.

#include <stdio.h>

main()

{

 int fah;

 for (fah=0;fah <=20;fah++)

‘C’ Scope

 printf("%dfahrenheit=%fcentigrade\n ",fah,(5.0/9.0)*(fah-

32));

}

Here is the output

 0 fahrenheit = -17.777778 centigrade

 1 fahrenheit = -17.222222 centigrade

 2 fahrenheit = -16.666667 centigrade

 3 fahrenheit = -16.111111 centigrade

 4 fahrenheit = -15.555556 centigrade

 5 fahrenheit = -15.000000 centigrade

 6 fahrenheit = -14.444444 centigrade

 7 fahrenheit = -13.888889 centigrade

 8 fahrenheit = -13.333333 centigrade

 9 fahrenheit = -12.777778 centigrade

 10 fahrenheit = -12.222222 centigrade

 11 fahrenheit = -11.666667 centigrade

 12 fahrenheit = -11.111111 centigrade

 13 fahrenheit = -10.555556 centigrade

 14 fahrenheit = -10.000000 centigrade

 15 fahrenheit = -9.444444 centigrade

 16 fahrenheit = -8.888889 centigrade

 17 fahrenheit = -8.333333 centigrade

 18 fahrenheit = -7.777778 centigrade

 19 fahrenheit = -7.222222 centigrade

 20 fahrenheit = -6.666667 centigrade

Class room Question

What happens if we miss initialization or reinitialization

part in a loop?

‘C’ Scope

 We can negate the initialization or reinitialization part

of the loop

let us see how,

#include <stdio.h>

main()

{

 int i=0;

 for(; i < 10 ;)

{

 printf (“%d”,i);

 i++;

 }

}

In above program i is initialized with 0 at the time of

declaration so it is not necessary to initialize it again in

construction of „for loop‟, and reinitialization is written

inside the body of the loop. So it is again not necessary to

write it in for loop construct.

What happens if we neglect the condition in for loop

construction?

 Condition part of a loop is necessary which actually

decides that it will execute or not, if we negate the

condition part it will execute INFINITELY.

#include <stdio.h>

main()

{

 int i=1;

‘C’ Scope

 clrscr();

 for (;;)

 {

 printf ("%d",i);

 i++;

 }

 getch();

}

Above program will run infinitely.

#What will be the effect if we terminate the for

construction with semicolon (;) ?

 For the answer of this question let‟s see the output of

this program

#include <stdio.h>

main()

{

 int i;

for(i=0;i<10;i++);

{

 printf (“%d”,i);

}

and here is the output

10

In the given program there is termination sign(;) in for

construct so it will not allow control to go to the body when

the condition is true, it will force the control to transfer to

the reinitialization part after checking the true condition. It

repeats within the for construct till the condition is true.

‘C’ Scope

When the condition becomes false it goes to the printf

statement, so the output would be 10 only.

Ex. 2.

Program To print the table of a given number

#include <stdio.h>

main()

{

 int num,i;

 clrscr();

 printf ("Enter a number : ");

 scanf ("%d",&num);

 fflush(stdin);

 for (i=1;i<=10;i++)

 {

 printf ("\n%d X %d = %d",num,i,num*i);

 }

 getch();

}

The output of the program would be

Enter a number : 8

8 X 1 = 8

8 X 2 = 16

8 X 3 = 24

.

.

8 X 9 = 72

8 X 10 = 80

Suppose we want to print the range of integer

‘C’ Scope

 1,2,3...... 32767, -32768,-32767,-32766.....-2,-1,0
Let‟s check out the output of the following program.

Ex. 3.

Program to print the range of integer

#include <stdio.h>

main()

{

 int i;

 clrscr();

 for (i=0;i<32768;i++)

 {

 printf (" %d",i);

 }

 getch();

}

The result will be an infinite loop

As 0,1,2...3767,-32868,-32767... 0,1,2...

because the maximum range of the integer variable is

32767 when we try to exceed by 1 it will be –32768 and in

this way it will go to 0 and try to increase the values

infinitely.

Nesting of for loops

Like Nested –If construct we can also nest for loops i.e put

loop inside loops.

The genereal body of nested loop can be explained by the

following syntax.

‘C’ Scope

for(initialize;termination condition;increament/decreament)

{

 Body of outer loop

for(initialize;termination condition; incr/decr)

{

 Body of inner loop

}

}

Let us see an example

for(i=0;i<10;i++)

{

 for(j=0;j<10;j++)

 printf(“%d %d”,i , j);

}

The above code would be executed one time to give 100

output lines. For one value of i the whole inner loop of j

would execute, & for the next value of i the inner loop of j

would execute fully once again and so on. The output of the

above program would be.

0 0

0 1

0 2

0 3

‘C’ Scope

 |

 |

 |

0 9

1 0

1 1

1 2

 |

 |

 |

 |

9 6

9 7

9 8

9 9

Ex. 4.

*

**

To print a triangle pattern according to number of rows

#include<stdio.h>

main()

{

 int i,rows,j;

 clrscr();

 printf ("Enter Number of rows :");

 scanf ("%d",&rows);

 for(i=0;i<rows;i++)

‘C’ Scope

 {

 for(j=0;j<=i;j++)

 {

 printf ("*");

 }

 printf ("\n");

 }

 getch();

}

Run part of above program

Enter number of rows :5

*

**

Ex. 5.

Print the star triangle in the mid of the screen like below

 *

 * *

 * * *

 * * * *

 * * * * *

#include <stdio.h>

main()

{

 int x,y,z,sp=1,middle=40;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&z);

‘C’ Scope

 for(y=1;y<=z;y++)

 {

 for(sp =1;sp<=middle;sp++)

 printf(" ");

 middle--;

 for(x=1;x<=y;x++)

 printf("* ");

 printf("\n");

 }

 getch();

}

Run part of above program:= 5

 *

 * *

 * * *

 * * * *

 * * * * *

Ex. 5.

Print the triangle of stars in reverse order in middle of

screen

 * * * * *

 * * * *

 * * *

 * *

 *

#include <stdio.h>

main()

{

 int x,y,z,sp,middle=40;

 clrscr();

‘C’ Scope

 printf("Enter the number:=");

 scanf("%d",&z);

 for(;z>=1;z--)

 {

 for(sp=1;sp<=middle;sp++)

 printf(" ");

 middle++;

 for(y=z;y>=1;y--)

 printf("* ");

 printf("\n");

 }

 getch();

}

Run part of above program

Enter the number:=5

 * * * * *

 * * * *

 * * *

 * *

 *

Ex. 6.

Program to print Rhombus of a number (1)
 1

 1 2 1

 1 2 3 2 1

 1 2 1

 1

#include<stdio.h>

main()

{

 int x,y,z,sp=1,middle=40;

 clrscr();

 printf("Enter the number:=");

‘C’ Scope

 scanf("%d",&z);

 for(y=1;y<=z;y++)

 {

 for(sp=1;sp<=middle;sp++)

 printf(" ");

 middle-=2;

 for(x=1;x<=y;x++)

 printf("%d ",x);

 for(x-=2;x>=1;x--)

 printf("%d ",x);

 printf("\n");

 }

 middle+=4;

 for(z--;z>=1;z--)

 {

 for(sp =1;sp<=middle;sp++)

 printf(" ");

 middle+=2;

 for(x=1;x<=z;x++)

 printf("%d ",x);

 for(x-=2;x>=1;x--)

 printf("%d ",x);

 printf("\n");

 }

 getch();

}

Run part of above program :=

Enter the number:=5

 1

 1 2 1

 1 2 3 2 1

 1 2 3 4 3 2 1

 1 2 3 4 5 4 3 2 1

‘C’ Scope

 1 2 3 4 3 2 1

 1 2 3 2 1

 1 2 1

 1

Ex. 7.

Program to print the rhombus of a number like below
 5

 4 5 4
 3 4 5 4 3

 2 3 4 5 4 3 2

1 2 3 4 5 4 3 2 1
 2 3 4 5 4 3 2

 3 4 5 4 3

 4 5 4
 5

#include<stdio.h>

main()

{

 int x,y,z,sp=1,middle=40;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&z);

 for(y=z;y>=1;y--)

 {

 for(sp=1;sp<=middle;sp++)

printf(" ");

 middle-=2;

 for(x=y;x<=z;x++)

 printf("%d ",x);

 for(x-=2;x>=y;x--)

 printf("%d ",x);

 printf("\n");

 }

 middle+=4;

‘C’ Scope

 for(y=2;y<=z;y++)

 {

 for(sp=1;sp<=middle;sp++)

 printf(" ");

 middle+=2;

 for(x=y;x<=z;x++)

 printf("%d ",x);

 for(x-=2;x>=y;x--)

 printf("%d ",x);

 printf("\n");

 }

 getch();

}

Run part of above program

Enter the number:=5
 5

 4 5 4

 3 4 5 4 3
 2 3 4 5 4 3 2

 1 2 3 4 5 4 3 2 1

 2 3 4 5 4 3 2
 3 4 5 4 3

 4 5 4

 5

Ex. 8.

Program to print the floyd triangle

1

0 1

1 0 1

0 1 0 1

1 0 1 0 1

#include<stdio.h>

main()

‘C’ Scope

{

 int num,y,z;

 clrscr();

 printf("Enter the last row number:=");

 scanf ("%d",&num);

 fflush(stdin);

 for(y=1;y<=num;y++)

 {

 if(y%2 != 0)

{

 for(z=1;z<=y;z++)

 {

 if(z%2 !=0)

 printf("1 ");

 else

 printf("0 ");

 }

 printf("\n");

 }

 else

 {

 for(z=1;z<=y;z++)

 {

if(z%2 !=0)

 printf("0 ");

 else

 printf("1 ");

 }

printf("\n");

 }

 }

 getch();

}

‘C’ Scope

Run part of above program

Enter the last row number:=5

1

0 1

1 0 1

0 1 0 1

1 0 1 0 1

Ex. 9.

Program to print the Pascal triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

#include<stdio.h>

main()

{

 int c,r,row,bc;

 clrscr();

 printf("Enter the last row number:=");

 scanf ("%d",&row);

 fflush(stdin);

 for(r=0;r<row;r++)

 {

 for(bc=1,c=0;c<=r;c++)

 {

 if(c==0)

 printf("\n%-3d",bc);

 else

‘C’ Scope

 {

 bc=bc *(r-c+1)/c;

 printf("%-3d",bc);

 }

 }

 }

 getch();

}

Run part of above program

Enter the last row number:=7

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Ex. 10.

Program to print the Binomial Coefficient

#include <stdio.h>

main()

{

 int ncr,n,r,a,b,x;

 clrscr();

 printf ("Enter the value for n : ");

 scanf ("%d",&n);

 printf ("Enter the value for r : ");

 scanf ("%d",&r);

‘C’ Scope

 r > (n-r) ? (a=r,b=n-r) :(a=n-r,b=r);

 for (x=n;x > a;x--)

 ncr = ncr * x;

 for (x=2;x <=b;x++)

 ncr= ncr/ x;

 printf ("The value of ncr is %d ",ncr);

 getch();

}

The output of the following program would be

Enter the value for n : 5

Enter the value for r : 10

The value of ncr is 1316

Enter the value for n : 60

Enter the value for r : 1

The value of ncr is 13424

Enter the value for n : 6

Enter the value for r : 5

The value of ncr is 7896

ii. while loop

The most common form of while loop is

In while loop we first write the initial value and then we

checks the condition if the condition is true it enters the

loop otherwise it comes out. In true condition it executes all

the statement inside the curly brackets. And then again

checks the condition this process repeats till the condition

‘C’ Scope

is true. While loop is also called as entry controlled loop

construct because it again & again checks the condition

before entering & executing the body of the loop i.e. at the

starting only.

initial value;

while(condition checking)

{

 body of the loop

}

Ex. 11.

Program to reverse a given number

given number => 123

output => 321

#include<stdio.h>

main()

{

 int num,result;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&num);

 fflush(stdin);

 while(num >=1)

 {

 result =num % 10;

num=num/10;

printf("%d",result);

}

‘C’ Scope

 getch();

}

Run part of above program

Enter the number:=2735

5372

The program explained how to reverse a number using a

simple while loop, here the decreament of counter is taken

Ex. 12.

Explain the position of individual digit in a number

#include<stdio.h>

main()

{

 int num,temp,div=1,store,total=0;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&num);

 total=temp =num;

 for(;num>=1;num=num/10)

 div*=10;

 div/=10;

 while(temp >=1)

 {

 store = temp/div;

 temp%=div;

 printf(" (%d * %d) +",store,div);

 div/=10;

 }

‘C’ Scope

 printf("\b= %d",total);

 getch();

}

Run part of above program

Enter the number:=1437

 (1 * 1000) + (4 * 100) + (3 * 10) + (7 * 1) = 1437

iii. do .. while loop

do while loop construct will first execute all the statements

written inside the loop and then it checks the condition if

the condition is true it re-enters the loop, otherwise it

comes out. So this loop will run at least once. That‟s why

this loop is also called as exit controlled looping construct.

initial value;

do

{

 body of the loop

}while(condition checking);

Ex. 13.

Program to generate the Fibonacci series

#include<stdio.h>

main()

{

 int fibo,store =0,value =1,result =0;

‘C’ Scope

 clrscr();

 printf("Enter the last number:=");

 scanf ("%d",&fibo);

 fflush(stdin);

 do

 {

 printf("%d ",result);

 result =value +store;

 value =store;

 store =result;

 }

 while(result <= fibo);

 getch();

}

Run part of above program

Enter the last number:=100

0 1 1 2 3 5 8 13 21 34 55 89

Jump Statements

„C‟ employs jump statements to perform unconditional

branch to a block or any particular statement in the

program.

These jump statements are of four types.

i) The return Statement

ii) The goto Statement

iii) The continue Statement

iv) The break Statement

The return statement

‘C’ Scope

The return statement is used to return from a function. It is

categorized as jump statement because it causes execution

to return (jump back) to the point at which the call to the

function was made.

A return statement may or may not have a value associated

with it. A return with a value can be used only in a function

with a non-void return type. In this case, the value

associated with return becomes the return value of the

function. A return without a value is used to return from a

void function.

The general syntax of this statement is

 return expression;

The goto Statement

The goto statement in „C‟ can be used to jump to any

particular area in program, such as jumping out of set of

deeply nested loops. This goto statement if used wisely can

be a benefit in narrow set of programming situations.

The goto statement requires a label for operation. The

general form of goto statement is

goto label;

.

.

.

.

label;

‘C’ Scope

Let us see an example,

X=1;

Loop1;

 X++;

 if(X<=100) goto Loop1;

The break Statement

This break statement can be employed in two ways; the

first use we have seen during switch case. And we can also

use it to jump out of the loop i.e. to force immediate

termination of loop, bypassing the normal loop termination

conditional test.

#include<stdio.h>

void main()

{

 int t;

 clrscr();

 for(t=0;t<100;t++)

 {

 printf("%d",t);

 if(t==10) break;

 }

 printf("\n printed t till 10");

 getch();

}

OUTPUT:-

‘C’ Scope

012345678910

 Printed t till 10

Summary

 Loops are the constructs used to execute the part of

a program repeatedly.

 In for loop first we give the initial value and then it

checks the condition, if the condition is true then it

enters the loop and execute all the statement inside

the curly brackets and after this it goes to the third

part that is changing variable value and it again

checks the conditions.

 In while loop we first write the initial value and

then we checks the condition if the condition is true

it enters the loop otherwise it comes out. In true

condition it executes all the statement inside the

body of loop.

 do while loop construct will first execute all the

statements written inside the loop and then it checks

the condition if the condition is true it re-enters the

loop, otherwise it comes out.

 Jump statements to perform unconditional branch to

a block or any particular statement in the program.

These are four types, namely return statement, goto

statement, continue statement, break statement

Self Review

Q1. Write the program to print the following patterns:-

a) *

‘C’ Scope

 * *

 * * *

* * * *

b) 1

1 2

1 2 3

1 2 3 4

c) 1 1

12 21

12321

d) A B C D E F G H

 A B C D E F G

 A B C D E F

 A B C D E

 A B C D

 A B C

 A B

 A

e) *

 *

f) *

**

‘C’ Scope

**

*

g) 1

22

333

4444

55555

h) ********

*** ***

** **

* *

i) 1

 232

 34543

 4567654

567898765

 Q2. Write a program to print the tables from 2 to 15 ?

Like the pattern below.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

 4 6 8 10 12 14 16 18 20 22 24 26 28 30

 -

 -

 -

 R20 30 40 50…………………………….. .. . 150

Q3. Write a program to find whether the given number is

Armstrong number or not ?

‘C’ Scope

Q4. Write a program to find factorial of a number ?

Q5. Write a program to find first 10 armstrong numbers?

Q6. Write a program to find whether the number is a

prime number or not . Also find prime numbers

between 1-100?

Q7. Find the sum of sine & cos series upto 10 terms ?

Q8. Write a program to compute compound interest for

any amount , at a particular rate for time t using loops

?

Q9. Write a program to fill the screen with smiley face

until any key is pressed by the user?

Q10. Write a program to generate Fibonacci series upto

10 elements?

Q11. Write a program to convert decimal number to

binary number?

Q12. Write a program to perform sum of N natural

numbers ?

Q13. Write a program to find GCD and LCM of three

natural numbers ?

Q14. Write a program to check whether the given number

is perfect, abundant or deficient ?

‘C’ Scope

CHAPTER - 5

ARRAY

In this chapter we will learn about the concept

of array, how to use and create array.

We will also learn about

One dimensional integer array

One dimensional character array (string)

Two dimensional integer array

Two dimensional character array(List of strings)

Concept of multidimensional array.

An Array is a collection of homogenous sequential memory

locations named using single variable and differentiated

using different indices.

One Dimensional Integer Array

What is the meaning of the declaration?

 int x = 10;

This declaration is the direction for compiler to :

(i) Reserve 2 bytes of memory for an integer variable

(ii) Associate the name x with memory address

(iii) Store value 10 to that address

‘C’ Scope

 9225 address of location

value at address

 x name of the location

But if we want to store more than one numbers (list of

numbers) with the same variable name then we have to use

an array. The method of declaration of an arry is in this

way

datatype name_of_array[number of elements in array];

 int x[5];

This declaration is the direction to compiler to:

(i) reserve 10 contiguous bytes of memory for 5

different integers (because 1 integer occupies 2

bytes)

(ii) associate the name x with the starting address of

that memory location

 9228 9230 9232 9234 9236

8 5 3 6 2

 0 1 2 3 4

 x

10

9228

‘C’ Scope

where the int shows the type of variable, x indicates the

name of variable and [5] indicates how many elements of

integers can be stored in our memory.

In the given figure the starting address is 9228 where the

integer 8 is stored. i.e. 8 is stored at location no. 9228/9229

location (since interger occupies 2 bytes in the memory) in

the same way next number is stored at the address

9230/9231 and so on.

[0],[1],[2].. are the indeces or subscripts which are used to

store, print or extract an individual integer.

To accept 5 integers we can use the following program

segment.

Ex. 1.

Program to accept 5 integers

#include <stdio.h>

main()

{

 int num[5],i,j;

 //To Accept five different integers

 for (i=0;i<5;i++)

 {

 printf ("Enter any integers : ");

 scanf ("%d",&num[i]);

 }

 //To print the given integers

 for (i=0;i<5;i++)

 {

 printf ("\n%d",num[i]);

‘C’ Scope

 }

 getch();

}

OUTPUT #####

Enter an integers : 40

Enter an integers : 69

Enter an integers : 789

Enter an integers : 23

Enter an integers : 654

40

69

789

23

654

 9228 9230 9232 9234 9236

40 69 789 23 6542

 0 1 2 3 4

 x

In above program we have entered five different integers

the first integer 40 will be stored at num[0] i.e. at address

9228 and second integer 69 will be stored at num[1] at

address 9230 and so on.

In the same manner we can print these numbers using their

indeces.

9228 is called as the base address of the array.

9228

‘C’ Scope

& sign can be used to extract the address of the variable.

If we want to print the starting address of the num then

following statement can be used to print it.

 65516 65518 65520 65522 65524

 0 1 2 3 4

 num

printf (“%u”,num);

Will print the starting address of array num and the address

of num[0] which is also same as the value of num and

which can be demonstrated by the following program

segment.

#include <stdio.h>

main()

{

 int num[5];

 clrscr();

 printf ("\n\n%u",num);

 printf ("\n\n%u",&num[0]);

 getch();

}

#####OUTPUT#####

65516

65516

‘C’ Scope

65516

We can also print the addresses of other locations using

following program.

Ex. 2.

Program to print addresses of the locations, of an array

#include <stdio.h>

main()

{

 int num[5];

 int i,j,k;

 clrscr();

 for(i=0;i<5;i++)

 {

 printf ("Enter a number : ");

 scanf ("%d",&num[i]);

 }

 for(i=0;i<5;i++)

 {

 printf ("\n%d is stored at address %u",num[i],&num[i]);

 }

 getch();

}

****output****

Enter a number : 6

Enter a number : 5

Enter a number : 4

Enter a number : 3

Enter a number : 2

‘C’ Scope

6 is stored at address 65516

5 is stored at address 65518

4 is stored at address 65520

3 is stored at address 65522

2 is stored at address 65524

Here are some examples where the concept of array can be

used

 List of students in an institute.

 List of countries.

 Marks of examination for the students of a institute.

 Name of the employees of an organization and their

salaries.

 List of any contents.

Technically we can say “ARRAY IS A SEQUENTIAL

COLLECTION OF DATA OR LIST OF ITEMS

SHARING A COMMON NAME”

See this memory segment

 9228 9230 9232 9234 9236

8 5 3 6 2

 0 1 2 3 4

‘C’ Scope

 x

the type of data stored at x[0] is integer and x[1] is also

integer. In the same way all the integers stored

x[0],x[1],x[2],x[3] and x[4] have the same data type. So

some times array is also called as homogeneous

representation of memory, because all elements have the

same datatype.

Array initialization

#include <stdio.h>

main()

{

 int x[5];

}

In this segment we have declared an array of 5 elements but

value stored at these locations are the garbage values. So

after declaring initialize the array with some meaningful

data.

Array can be initialized in two ways

1. Initialization at the time of compilation.

2. Initialization of array at run time.

How to initialize the integer array at compile

time.

9228

‘C’ Scope

Look at this statement given below, in this statement we are

initializing the array for the compile time by providing the

list separated by the comma.

int x[5]={9,6,4,8,7};

this list must be initialized at the time of declaration so, if

we will try to initialize the array in the following manner

then there will be an error.

int x[5];

x[5]={6,5,4,3,2};

How to initialize the integer array at run time.

An integer array can be intitialized at run time using

scanf().

#include <stdio.h>

main()

{

 int x[5];

 int i;

 for(i=0;i<5;i++)

 {

 scanf (%d”,&x[i]);

 }

}

In this example we are initializing the values for

x[0],x[1]… at the run time using „for‟ loop.

‘C’ Scope

We can also initialize array at run time using one by one

initialization technique, as shown in following program

segment.

#include <stdio.h>

main()

{

 int x[5];

 scanf (“\n%d %d %d %d

%d”,&x[0],&x[1],&x[2],&x[3],&x[4]);

 }

}

Ex. 3.

Program to input ten numbers and print their sum

#include <stdio.h>

main()

{

 int num[10],i,sum;

 clrscr();

 for (i=0;i<10;i++)

 {

 printf ("Enter an integers : ");

 scanf ("%d",&num[i]);

 }

 for (i=0;i<10;i++)

 {

 sum=sum+num[i];

 }

 printf ("\n The sum of the given numbers is %d ",sum);

‘C’ Scope

 getch();

}

OUTPUT #####

Enter an integers : 23

Enter an integers : 45

Enter an integers : 6

Enter an integers : 4

Enter an integers : 36

Enter an integers : 67

Enter an integers : 2

Enter an integers : 12

Enter an integers : 11

Enter an integers : 12

The sum of the given numbers is : 1516

Ex. 4.

Program to print the largest and smallest value of five

numbers

#include <stdio.h>

main()

{

 int i,j,k,num[5],max=0,min;

 clrscr();

 for (i=0;i<5;i++)

 {

 printf ("\nEnter a number : ");

 scanf ("%d",&num[i]);

 }

‘C’ Scope

 min=num[0];

 for (i=0;i<5;i++)

 {

 if (max < num[i])

 max=num[i];

 if (min>num[i])

 min=num[i];

 }

 printf ("\n The maximum number is %d ",max);

 printf ("\n The minimum number is %d ",min);

 getch();

}

OUTPUT #####

Enter a number : 9

Enter a number : 8

Enter a number : 7

Enter a number : 6

Enter a number : 5

The maximum number is 9

The minimum number is 5

Selection Sort

Ex. 5.

Program to sort an array of 10 integers implementing

selection sort technique

#include <stdio.h>

main()

{

 int num[10],i,j,temp;

‘C’ Scope

 clrscr();

 for (i=0;i<10;i++)

 {

 printf ("Enter any number : ");

 scanf ("%d",&num[i]);

 }

 for (i=0;i<10;i++)

 {

 for (j=i+1;j<10;j++)

 {

 if (num[i] > num[j])

 {

 temp=num[i];

 num[i]=num[j];

 num[j]=temp;

 }

 }

 }

printf (“\nThe output of the sorted array is : “);

 for (i=0;i<10;i++)

 printf ("\n%d",num[i]);

 getch();

}

OUTPUT #####

Enter any number : 6

Enter any number : 10

Enter any number : 9

Enter any number : 8

Enter any number : 4

Enter any number : 5

Enter any number : 3

‘C’ Scope

Enter any number : 2

Enter any number : 7

Enter any number : 1

The output of the sorted array is :

1

2

3

4

5

6

7

8

9

10

Bubble Sort

Ex. 6.

Program to sort an array of 10 integers implementing

bubble sort technique

#include <stdio.h>

main()

{

 int num[10],i,j,temp;

 clrscr();

 for (i=0;i<10;i++)

 {

 printf ("Enter any number : ");

 scanf ("%d",&num[i]);

 }

 for (i=0;i<10;i++)

 {

‘C’ Scope

 for (j=0;j<10;j++)

 {

 if (num[j] >= num[j+1])

 {

 temp=num[j];

 num[j]=num[j+1];

 num[j+1]=temp;

 }

 }

 }

 for (i=0;i<10;i++)

 printf ("\n%d",num[i]);

 getch();

}

OUTPUT #####

Enter any number : 6

Enter any number : 10

Enter any number : 9

Enter any number : 8

Enter any number : 4

Enter any number : 5

Enter any number : 3

Enter any number : 2

Enter any number : 7

Enter any number : 1

The output of the sorted array is :

1

2

3

4

5

‘C’ Scope

6

7

8

9

10

One – Dimensional Character Array

Char x;

Consider the above declaration, this will occupy one byte

of memory to store a single character for variable x.

But if we want to store the name of a student in variable x,

then it is not possible because this variable is made to store

a single character only.

If you want to store the name of a student then you have to

occupy more bytes according to length of the name.

For this purpose you have to use character array. A

character array can be declared as shown below.

char nm[5];

In the same way we can use character array

 9225 9226 9227 9228 9229

 0 1 2 3 4

 nm

9225

‘C’ Scope

The above declaration tells the compiler to occupy the 10

contiguous bytes of memory and associate the starting

address (say 9225) of that memory with variable nm,

where we can store a name of maximum 4 characters of

name + one Null character for this variable.

An array can be initialized at the time of declaration like

char nm[5]=”RAJ\0”

 9225 9226 9227 9228 9229

R A J \0

 0 1 2 3 4

 nm

A null character will be produced at the end of the string

RAJ. Individual character can be printed using the index of

the character.

e.g.

printf (“%c”,x[2]);

will print the character J because it is available at location

number 2.

Where as in the following statement

printf(“%s”,x);

9225

‘C’ Scope

 The control will go to the x and from there it will take the

starting address of array and will start dumping of

characters to the screen till it does not get the null.

And we see that the full string is printed i.e.

RAJ

Character array can be initialized at the time of declaration

only.

Try the following statements :-

char arr[10];

arr=”amit”;

This will give an error because as we said earlier array can

be initialize only at the time of declaration i.e.

char arr[10] = “amit” is a valid statement.

Array can also be initialized in the following manner

char arr[10] = {„a‟, „m‟, „i‟, „t‟, „\0‟};

This is known as character by character initialization.

If we are initializing a character array at the time of

declaration then it is not necessary to specify the size of

array. If we do not specify the size of array at the time

declaration the size of array will be determined

automatically, according to the number of elements

initialized.

‘C’ Scope

Eg.

char str[]=”my angel”;

here in this example variable will determine the size of

array as 9.

#include<stdio.h>

main()

{

 char str[]="My Angel";

 clrscr();

 printf ("\n\n%d",sizeof(str));

 getch();

}

OUTPUT #####

9

Ex. 7.

Program to reverse a string

#include<stdio.h>

main()

{

 char str[100];

 int i,j,k;

clrscr();

 printf ("Enter a string : ");

 gets(str);

 fflush(stdin);

‘C’ Scope

 for(i=0;str[i];i++);

 for(i--;i>=0;i--)

 printf ("%c",str[i]);

 getch();

}

OUTPUT #####

Enter a string : this is a book

koob a si siht

Ex. 8.

Program to reverse a string without reversing the word

#include<stdio.h>

main()

{

 char str[100];

 int i,temp;

 clrscr();

 printf ("Enter a string : ");

 gets(str);

 fflush(stdin);

 for(i=0;str[i];i++);

 for(i--;i>=-1;i--)

 {

 if(str[i]==' ' || str[i]=='\t' || i==-1)

 {

 temp=i;

 for(i++;str[i]!='\0' && str[i]!=' ' && str[i]!='\t' ;i++)

 printf ("%c",str[i]);

 i=temp;

 printf (" ");

 }

‘C’ Scope

 }

 getch();

}

OUTPUT #####

Enter a string : this is a book
book a is this

Ex. 9.

Program to reverse a string without reversing the word

#include<stdio.h>

main()

{

 char str[100];

 int i,temp;

 clrscr();

 printf ("Enter a string : ");

 gets(str);

 fflush(stdin);

 for(i=0;str[i];i++);

 for(i--;i>=-1;i--)

 {

 if(str[i]==' '||str[i]=='\t' || i==-1)

 {

 temp=i;

 for(i++;str[i]!='\0'&&str[i]!=' '&& str[i]!='\t' ;i++)

 printf ("%c",str[i]);

 i=temp;

 printf (" ");

 }

 }

 getch();

‘C’ Scope

}

OUTPUT #####

Enter a string : this is a book

book a is this

Ex. 10.

Program to form Piglatin of a string general (it is "pig

latin like" version of this string by using the following rule:

move the first character to the end of the word and append

"a".)

#include<stdio.h>

main()

{

 char str[100];

 int i;

 char temp;

 clrscr();

 printf ("Enter a string : ");

 gets(str);

 fflush(stdin);

 temp=str[0];

 for(i=1;str[i];i++)

 {

 if(str[i]==' ' || str[i]=='\t' || str[i]=='\0')

 {

 printf ("%ca ",temp);

 temp=str[++i];

‘C’ Scope

 }

 else

 {

 printf ("%c",str[i]);

 }

 }

 printf ("%ca ",temp);

 getch();

}

OUTPUT #####

Run part of above program

Enter a string : this is a book

hista sia aa ookba

Ex. 11.

Program to check whether the string is palindrome or not.

(A string is said to be palindrome string if reversing the

string gives the same string as result.)

#include<stdio.h>

main()

{

 char str[100];

 int i,j;

 clrscr();

 printf ("Enter a string : ");

 gets(str);

 fflush(stdin);

 for(i=1;str[i];i++);

 for (i--,j=0;i>=0 && str[i]==str[j];i--,j++);

 if(i==-1)

‘C’ Scope

 {

 printf ("Entered String is a Palindrome : ");

 }

 else

 {

 printf ("Entered String is not a palindrome : ");

 }

 getch();

}

OUTPUT #####

Enter a string : this

Entered String is not a palindrome :

Enter a string : level

Entered String is a Palindrome :

Ex. 12.

Program to find frequency count of a substring into a parent

string

#include<stdio.h>

main()

{

 char str[100],fstr[20];

 int i,j,count=0;

 clrscr();

 printf("Enter the string : ");

 gets(str);

 fflush(stdin);

 printf ("Enter the string to count : ");

 gets(fstr);

‘C’ Scope

 fflush(stdin);

 for(i=0;str[i];i++)

 {

 if(str[i]==fstr[0])

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j])

 {

 count++;

 }

 }

 }

 printf ("The string [%s] occurs in [%s] %d times

",fstr,str,count);

 getch();

}

OUTPUT #####

Run part of above program

Enter the string : this is a book

Enter the string to count : is

The string [is] occurs in [this is a book] 2 times

Ex. 13.

Program to count the frequency of a string in a long string

advance

#include<stdio.h>

main()

{

 char str[100],fstr[20],ans;

‘C’ Scope

 int i,j,count=0;

 clrscr();

 printf("Enter the string : ");

 gets(str);

 fflush(stdin);

 printf ("Enter the string to count : ");

 gets(fstr);

 fflush(stdin);

 printf ("Match Whole Word : ");

 ans=getchar();

 fflush(stdin);

 for(i=0;str[i];i++)

 {

 if(ans=='y')

 {

 if(str[i]==fstr[0] && str[i-1]==' ')

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j] && str[i]==' ')

 {

 count++;

 }

 }

 }

 else

 {

 if(str[i]==fstr[0])

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j])

 {

 count++;

‘C’ Scope

 }

 }

 }

 }

 printf ("The string [%s] occurs in [%s] %d times

",fstr,str,count);

 getch();

}

OUTPUT #####

Enter the string : this is a good book published by scope

computer

Enter the string to count : is

Match Whole Word : y

The string [is] occurs in [this is a good book published by

scope computer]

 1 times

Enter the string : this is a book published by scope

computer

Enter the string to count : is

Match Whole Word : n

The string [is] occurs in [this is a book published by

scope computer]

 3 times

Ex. 14.

Program to find and replace the string

#include<stdio.h>

main()

{

‘C’ Scope

 char str[100],fstr[20],rstr[20],ans;

 int i,j,count=0;

 clrscr();

 printf("Enter the string : ");

 gets(str);

 fflush(stdin);

 printf ("Enter the string to count : ");

 gets(fstr);

 fflush(stdin);

 printf ("Enter the string to replace : ");

 gets(rstr);

 fflush(stdin);

 printf ("Match Whole Word : ");

 ans=getchar();

 fflush(stdin);

 for(i=0;str[i];i++)

 {

 if(ans=='y')

 {

 if(str[i]==fstr[0] && str[i-1]==' ')

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j] && str[i]==' ')

 {

 printf ("%s",rstr);

 }

 }

 printf ("%c",str[i]);

 }

 else

 {

 if(str[i]==fstr[0])

‘C’ Scope

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j])

 {

 printf ("%s",rstr);

 }

 }

 printf ("%c",str[i]);

 }

 }

 getch();

}

OUTPUT #####

Enter the string : this is a good book published by scope

computer

Enter the string to count : is

Enter the string to replace : are

Match Whole Word : n

thare are a book publarehed by scope computer

Enter the string : this is a book published by scope

computer

Enter the string to count : is

Enter the string to replace : are

Match Whole Word : y

this are a book published by scope computer

Ex. 15.

Program to find and replace the string (advance version)

‘C’ Scope

#include<stdio.h>

main()

{

 char ans1,str[100],fstr[20],rstr[20],tstr[100],ans;

 int i,j,t,count=0,c=1,r=1;

 clrscr();

 printf("Enter the string : ");

 gets(str);

 fflush(stdin);

 printf ("Enter the string to count : ");

 gets(fstr);

 fflush(stdin);

 printf ("Enter the string to replace : ");

 gets(rstr);

 fflush(stdin);

 printf ("Match Whole Word : ");

 ans=getchar();

 fflush(stdin);

 getch();

 clrscr();

 gotoxy(1,2);

 printf ("%s\n",str);

 getch();

 for(i=0,t=0;str[i];t++,i++)

 {

 if(ans=='y')

 {

 if(str[i]==fstr[0] && str[i-1]==' ')

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

 if(!fstr[j] && str[i]==' ')

 {

‘C’ Scope

 gotoxy(i,1);

 textattr(142);

 cprintf("%c",25);

 gotoxy(55,1);

 printf ("Replace Y/N : ");

 ans1=getche();

 fflush(stdin);

 gotoxy(i,1);

 printf (" ");

 if(ans1=='y')

 {

 for(r=0;rstr[r];r++)

 {

 tstr[t++]=rstr[r];

 }

 }

 else

 {

 for(r=0;fstr[r];r++)

 {

 tstr[t++]=fstr[r];

 }

 }

 }

 }

 tstr[t]=str[i];

 }

 else

 {

 gotoxy(c,r);

 if(str[i]==fstr[0])

 {

 for(j=0;str[i]==fstr[j] && fstr[j];i++,j++);

‘C’ Scope

 if(!fstr[j])

 {

 gotoxy(i,1);

 printf("%c",25);

 gotoxy(55,1);

 printf ("Replace Y/N : ");

 ans1=getche();

 fflush(stdin);

 if(ans1=='y')

 {

 for(r=0;rstr[r];r++)

 {

 tstr[t++]=rstr[r];

 }

 }

 else

 {

 for(r=0;fstr[r];r++)

 {

 tstr[t++]=fstr[r];

 }

 }

 }

 }

 }

 tstr[t]=str[i];

 }

 tstr[t]='\0';

 gotoxy(3,3);

 printf ("%s",tstr);

 getch();

}

‘C’ Scope

OUTPUT #####

this is a book

This is a good book

Run part of above program:=

Enter the string : this is a good book published by scope

computer

Enter the string to count : is

Enter the string to replace : are

Match Whole Word : n

 Replace Y/N :

n

this is a good book published by scope computer

thare is a good book published by scope computer

Enter the string : this is a good book published by scope

computer

Enter the string to count : is

Enter the string to replace : are

Match Whole Word : y

 Replace Y/N : y

this is a good book published by scope computer

this are a good book published by scope computer

Ex. 16.

Program to print a string as triangle, like one shown below

S

SC

SCO

SCOP

‘C’ Scope

SCOPE

#include<stdio.h>

main()

{

 char str[50]={"SCOPECOMPUTER"};

 int i,len;

 clrscr();

 for (i=1;i<=strlen(str);i++)

 printf ("\n%-.*s",i,str);

 getch();

}

OUTPUT #####

S

SC

SCO

SCOP

SCOPE

SCOPEC

SCOPECO

SCOPECOM

SCOPECOMP

SCOPECOMPU

SCOPECOMPUT

SCOPECOMPUTE

SCOPECOMPUTER

Ex. 17.

Program to print a string as reverse triangle as shown below

‘C’ Scope

SCOPE

SCOP

SCO

SC

S

#include<stdio.h>

main()

{

 char str[50]={"SCOPECOMPUTER"};

 int i,len=strlen(str);

 clrscr();

 for (i=1;i<=len;i++)

 printf ("\n%-*.*s",len,len-i+1,str);

 getch();

}

OUTPUT #####

SCOPECOMPUTER

SCOPECOMPUTE

SCOPECOMPUT

SCOPECOMPU

SCOPECOMP

SCOPECOM

SCOPECO

SCOPEC

SCOPE

SCOP

SCO

SC

S

‘C’ Scope

Ex. 18.

Program to print a string as reverse triangle as shown below

 SCOPE

 SCOP

 SCO

 SC

 S

#include<stdio.h>

main()

{

 char str[50]={"SCOPECOMPUTER"};

 int i,len=strlen(str);

 clrscr();

 for (i=1;i<=len;i++)

 printf ("\n%*.*s",len,len-i+1,str);

 getch();

}

OUTPUT #####

SCOPECOMPUTER

 SCOPECOMPUTE

 SCOPECOMPUT

 SCOPECOMPU

 SCOPECOMP

 SCOPECOM

 SCOPECO

 SCOPEC

 SCOPE

‘C’ Scope

 SCOP

 SCO

 SC

 S

Ex. 19.

Program to print scope computer as a reverse triangle like

below

 S

 SC

 SCO

 SCOP

 SCOPE

#include<stdio.h>

main()

{

 char str[50]={"SCOPECOMPUTER"};

 int i,len=strlen(str);

 clrscr();

 for (i=1;i<=len;i++)

 printf ("\n%*.*s",len,i,str);

 getch();

}

OUTPUT #####

 S

 SC

 SCO

 SCOP

 SCOPE

‘C’ Scope

 SCOPEC

 SCOPECO

 SCOPECOM

 SCOPECOMP

 SCOPECOMPU

 SCOPECOMPUT

 SCOPECOMPUTE

SCOPECOMPUTER

2-D INTEGER ARRAY

Friends previously we have read about one dimensional

integer array which is used for list of numbers. Now

consider the situation where you have 3 patients, and all the

patients are monitored for the body temperature for 4 days.

The temperature of all the patients for four days is given in

following table.

 0 1 2 3

0

3

 0

 1

 2

This table contains 12 values of body temperature with 4

values in each row. Now consider this table as row and

 Day 1 Day 2 Day 3 Day 4

Patient no.1
93 95 97 98

Patient no.2
100 102 103 99

Patient no 3
98 101 97 96

‘C’ Scope

columns collection, there are 3 rows and 4 columns, which

is now represented by a 3 X 4 matrix.

Now, if we want to extract any one value of temperature we

have to mention the row no. and column no. Suppose that

the entire matrix is denoted by variable m and if you want

to extract the temperature of patient no. 2 of day 3. This

tempereature can be extracted by m[1][2]. This m[1][2]

refers to temperature 103.

To define m we can use the following syntax

int m[3][4];

This is what we can represent by a two dimensional integer

array.

We can represent these values in terms of memory layout

as shown below

 0 1 2

0 1 2 3 0 1 2 3 0 1 2 3

According to the given conditions, first value will be

stored at m[0][0] second will be stored at [0][1] third will

be at m[0][2], fourth value will be stored at m[0][3], these

values are for patient one. In the same style value will be

stored for patient no.2 i.e temperature of day 1 for patient 2

93 95 97 98 100 102 103 99 101 97 96 98

First row of array Second row of array Third row of array

‘C’ Scope

will be stored at m[1][0] for second day it will be stored at

m[1][1] and so on.

We can also initialize these values as given below

 int m[3][4]={93,95,97,98,

 100,102,103,99,

 98,101,97,96};

We can also input the values at run time

Ex. 20.

Program to implement use of 2D array.

#include <stdio.h>

main()

{

 int i,j,m[3][4];

 clrscr();

 for(i=0;i<3;i++)

 {

 for(j=0;j<4;j++)

 {

 printf ("Enter the value for patient no. %d and day no. %d

",i+1,j+1);

 scanf ("%d",&m[i][j]);

 }

 }

 printf ("\n\nTemperatures of the patients \n\n");

 printf ("\n day 1 day 2 day 3 day

4\n\n”);

 for(i=0;i<3;i++)

 {

‘C’ Scope

 printf("Temperature of patient no. %d",i+1);

 for(j=0;j<4;j++)

 {

 printf (" %d ",m[i][j]);

 }

 printf ("\n");

 }

 getch();

}

OUTPUT #####

Enter the value for patient no. 1 and day no. 1 93

Enter the value for patient no. 1 and day no. 2 95

Enter the value for patient no. 1 and day no. 3 97

Enter the value for patient no. 1 and day no. 4 98

Enter the value for patient no. 2 and day no. 1 100

Enter the value for patient no. 2 and day no. 2 102

Enter the value for patient no. 2 and day no. 3 103

Enter the value for patient no. 2 and day no. 4 99

Enter the value for patient no. 3 and day no. 1 98

Enter the value for patient no. 3 and day no. 2 101

Enter the value for patient no. 3 and day no. 3 97

Enter the value for patient no. 3 and day no. 4 96

Temperatures of the patients

 day 1 day 2 day 3 day 4

Temperature of patient no. 1 93 95 97 98

Temperature of patient no. 2 100 102 103 99

‘C’ Scope

Temperature of patient no. 3 98 101 97 96

Ex. 21.

Program to convert rows to columns and columns to rows

in a matrix

#include<stdio.h>

main()

{

 char str[4][4];

 int a,b,total=0;

 clrscr();

 for(a=0;a<=3;a++)

 {

 for(b=0;b<=3;b++)

 {

printf("Enter the element of %d row and %d column:=

",a+1,b+1);

 scanf("%d",&str[a][b]);

 }

 printf("\n");

 }

 for(a=0;a<=3;a++)

 {

 for(b=0;b<=3;b++)

 printf(" %d",str[a][b]);

 printf("\n");

 }

 printf("\n");

 for(b=0;b<=3;b++)

 {

 for(a=0;a<=3;a++)

‘C’ Scope

 printf(" %d",str[a][b]);

 printf("\n");

 }

 getch();
}

OUTPUT #####

Enter the element of 1 row and 1 column:= 2

Enter the element of 1 row and 2 column:= 5

Enter the element of 1 row and 3 column:= 3

Enter the element of 1 row and 4 column:= 7

Enter the element of 2 row and 1 column:= 5

Enter the element of 2 row and 2 column:= 9

Enter the element of 2 row and 3 column:= 1

Enter the element of 2 row and 4 column:= 8

Enter the element of 3 row and 1 column:= 4

Enter the element of 3 row and 2 column:= 2

Enter the element of 3 row and 3 column:= 7

Enter the element of 3 row and 4 column:= 1

Enter the element of 4 row and 1 column:= 9

Enter the element of 4 row and 2 column:= 4

Enter the element of 4 row and 3 column:= 8

Enter the element of 4 row and 4 column:= 3

 2 5 3 7

 5 9 1 8

 4 2 7 1

 9 4 8 3

‘C’ Scope

 2 5 4 9

 5 9 2 4

 3 1 7 8

 7 8 1 3

Ex. 22.

Program to insert elements in matrix and print the row

total, column total and diagonal total

#include<stdio.h>

main()

{

 char str[4][4];

 int a,b,total=0;

 clrscr();

 for(a=0;a<=3;a++)

 {

 for(b=0;b<=3;b++)

 {

 printf("Enter the element of %d row and %d column:=

",a+1,b+1);

 scanf("%d",&str[a][b]);

 }

 printf("\n");

 }

 for(a=0;a<=3;a++)

 {

 total =0;

 for(b=0;b<=3;b++)

 {

 total+=str[a][b];

‘C’ Scope

 printf(" %d",str[a][b]);

 }

 printf(" %d\n",total);

 }

 for(b=0;b<=3;b++)

 {

 total =0;

 for(a=0;a<=3;a++)

 {

 total+=str[a][b];

 }

 printf(" %d",total);

 }

 total = 0;

 for(a=0;a<=3;a++)

 {

 total+=str[a][a];

 }

 printf(" %d",total);

 gotoxy(13,20);

 total = 0;

 for(a=0,b=3;a<=3;a++,b--)

 {

 total+=str[a][b];

 }

 printf(" %d",total);

 getch();

}

#####OUTPUT#####

‘C’ Scope

Run part of above program

Enter the element of 1 row and 1 column:= 2

Enter the element of 1 row and 2 column:= 5

Enter the element of 1 row and 3 column:= 1

Enter the element of 1 row and 4 column:= 8

Enter the element of 2 row and 1 column:= 2

Enter the element of 2 row and 2 column:= 3

Enter the element of 2 row and 3 column:= 9

Enter the element of 2 row and 4 column:= 4

Enter the element of 3 row and 1 column:= 5

Enter the element of 3 row and 2 column:= 8

Enter the element of 3 row and 3 column:= 3

Enter the element of 3 row and 4 column:= 7

Enter the element of 4 row and 1 column:= 2

Enter the element of 4 row and 2 column:= 8

Enter the element of 4 row and 3 column:= 4

Enter the element of 4 row and 4 column:= 7

 2 5 1 8 16

 2 3 9 4 18

 5 8 3 7 23

 2 8 4 7 21

 11 24 17 26 15

2-D Character Array

Now that we have read enough about 2D integer array and

one dimensional character array now we will learn two

dimensional character array.

‘C’ Scope

Consider the following

char nm[10];

This statement can be used to store a single name in

variable nm, but consider the situation that you want to

store more that one names refers to single variable then you

have to use two dimensional character array.

Suppose you want to store 3 names referred by a variable

nm, then we will declare the variable as given below.

char nm[3][6];

This statement will occupy 3 different array of size 6 each.

We can also initialize this 2 Dimensional array as

mentioned here

char nm[3][6]={

 "Angel",

 "Mona",

 "Sam"

 };

 0 1 2

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

A n g e l \0 M

o n a S a m

First Array Second Array Third Array

 \0 \0 \0 \0 \0

‘C’ Scope

Unused memory blocks will be initialized by NULL. i.e

nm[0][5], nm[1][4], nm[1][5], nm[2][3], nm[2][4] and

nm[2][5] will be initialized by NULL character.

#include<stdio.h>

main()

{

 char arr[10][10]= { "Zero\0",

 "One\0",

 "Two\0",

 "Three\0",

 "Four\0" ,

 "Five\0",

 "Six\0",

 "Seven\0",

 "Eight\0",

 "Nine\0"

 };

 int num,temp,div =1,value;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&num);

 temp=num;

 for(;temp>=1;temp=temp/10)

 div*=10;

 div/=10;

 printf("divisor = %d\n",div);

 if(num==0)

 printf("zero");

 while (div>=1)

 {

 value =num/div;

 num%=div;

‘C’ Scope

 div/=10;

 printf(" %s ",arr[value]);

 }

 getch();

}

OUTPUT #####

Enter the number:=8904

divisor = 1000

Eight Nine Zero Four

Ex. 23.

Program to accept a three digit number and print it in words

(like 123 => One hundered Twenty Three)

#include<stdio.h>

main()

{

char arr[20][10]=

 {"zero\0","one\0","two\0","three\0","four\0",

"five\0","six\0","seven\0","ei

ght\0","nine\0",

"ten\0","eleven\0","twelve\0"

,"thirteen\0",

"forteen\0","fifteen\0","sixtee

n\0",

"seventeen\0","eighteen\0","n

ineteen\0"};

char sty[8][10] ={"twenty\0","thirty\0",”forty\0","fifty\0",

 "sixty\0", "seventy\0",

"eighty\0","ninety\0"};

‘C’ Scope

 int num,temp,div =1,value;

 clrscr();

 printf("Enter the number:=");

 scanf("%d",&num);

 fflush(stdin);

 temp=num;

 for(temp/=10;temp>=1;temp/=10)

 div*=10;

 printf("divisor = %d\n",div);

 if(num==0)

 printf("zero");

 while (num>=1)

 {

 value =num/div;

 if(div==100)

 printf(" %s hundred ",arr[value]);

 else

 {

 if((num >=20 && num <=99))

 printf(" %s ",sty[value-2]);

 else

 {

 printf("%s ",arr[num]);

 break;

 }

 }

 num%=div;

 div/=10;

 }

 getch();

}

‘C’ Scope

OUTPUT #####

Enter the number:=100

divisor = 100

 one hundred

Enter the number:=120

divisor = 100

 one hundred twenty

Enter the number:=113

divisor = 100

 one hundred thirteen

Enter the number:=0

divisor = 1

zero

Enter the number:=10

divisor = 10

ten

Enter the number:=196

divisor = 100

one hundred ninety six

Summary
 An Array is a collection of homogenous sequential

memory locations named using single variable and

differentiated using different indices.
 During the declaration of array we have to give the

size i.e the total memory location to be occupied

within square brackets([]).
 The size given in square brackets is called subscript.

Also during manipulation, storage or retrieval of

array an index counter variable is taken to access

the elements in an array.

‘C’ Scope

Self Review

Q1. Write a program to find largest, second largest ,

and third largest element of an array?

Q2. Write a program to mean, mode, median of

arrays?

Q3. Write a program to find sum of products, products

of sum of two arrays?

Q4. Write a program to remove duplicates in an array?

Q5. Write a program to number of vowels and

consonants in a string?

Q6. Write a program to implement sparse matrix?

Q7. Write a program to check whether the matrix is

symmetric matrix or not ?

Q8. Write a program to find sum of diagonal elements

of a square matrix?

Q9. Write a program to print transpose of matrix?

Q10. Write a program to find inverse of 3X3 matrix?

Q11. Write a program to implement Travelling

Salesman Problem using matrix?

Q12. Write a program to print square matrix helically?

‘C’ Scope

CHAPTER - 6

POINTERS

Friends, What is a pointer ?

A pointer can be defined as a variable which can contains

the address of another variable.

A normal variable can not hold the address of another

variable.

Consider the segment

int x,y;

y=&x;

The above initialisation is incorrect because x and y are the

normal integer variables, and we are trying to assign the

address of x in variable y. Which is not possible, because a

normal variable can not hold the address of another

variable.

Pointers are the special variables have the capability to hold

the address of other variables.

As other variables a pointer must be defined before it can

be used.

int x,*y;

‘C’ Scope

y=&x;

In above segment we have declared y as pointer variable

using asterisk sign, now y is a pointer variable, and it is

containing the address of x.

(To declare a variable as a pointer variable simply place the

asterisk in front the variable name).

The memory map of above segment can be

10 5000

5000/5001

A B

2004/2007
Int *b= &aInt a = 10

The rvalues and lvalues
As we declare any variable, it stores into the memory. In

„C‟ we can say

Lvalue of a variable is the address of the variable.

And rvalue is the value that the variable hold

In the above example rvalue of b is equivalent to the lvalue

of a as shown in memory map.

In above example the address of a is 5000 and the address

of b is 2004 the value of a is 10 and the value of b is

address of a i.e. 5000.

‘C’ Scope

Now let us see the output of the following program

main()

{

 int x=10;

printf (“\n The value of x is : “x);

printf (“\n The address of x is : “ ,&x);

}

the output of the program would be

The value of x is : 10

The address of the x is : 64450

Void pointers :

 Pointers can also be declared as void.

Void pointers can't be dereferenced without explicit

casting. This is because the compiler can't determine the

size of the object the pointer points to.

 int x;

 float r;

 void *p = &x; /* p points to x */

 int main (void)

 {

 *(int *) p = 2;

 p = &r; /* p points to r */

 *(float *)p = 1.1;

 }

‘C’ Scope

#include <stdio.h>

main()

{

 int num[]={5,4,3,2,1,0},*pt;

 for(pt=&num[5];pt>=&num[0];pt--)

 printf ("\n%u %d",pt,*pt);

 getch();

}

output

65524 0

65522 1

65520 2

65518 3

65516 4

65514 5

Memory map for given program

65514 65516 65518 55520 65522 65524

 0 1 2 3 4 5

num

 5 4

5

 5

 3 2 1 0
0

0

5

 5

Index of array

Addresses

‘C’ Scope

pt

How to Understand ?

According the given memory map and program, num is an

array of 6 integers and pt is a pointer having the address of

sixth element of the array which is 65524 for given

condition. This address will not be the same for every

execution of the program because the data may take

different address at different times.

When the loop starts to execute for the first time the

address of sixth element will be assigned to the pointer pt

means the value for the pt will be 65524. First time it will

print the value of pt i.e 65524 and the *pt will print the

value at 65524 i.e 0 in second chance value of pt will be

reduced due to pt- - and it becomes 65522 and the output

for the second time will be 65522 and *pt will be 1. After

executing printf() statement the value of pt will be reduced

again and it will become 65520 and the output for the third

time will be 65520 and 2. This process will be continued

for six times. And the result will be printed as given below.

65524 0

65522 1

65520 2

65518 3

65516 4

65514 5

#include <stdio.h>

main()

65524

5

 5

‘C’ Scope

{

 int a,num[]={3,2,1,0},*pt;

 clrscr();

 for(pt=num+3,a=*pt;a<=3;a++)

 printf ("\n%d",pt[-a]);

 getch();

}

output

0

1

2

3

How to Understand ?

Memory map for given program

65514 65516 65518 65520

0 1 2 3

pt

 65520

Addresses

 3 2 1 0
0

0

5

 5

Index of array

‘C’ Scope

a

How to Understand ?

According to the Given memory map first the array num

will be initialized to the values 3,2,1,0. After the program

control will go to the for loop in first iteration num+3

indicates the address of index 3 which is 65520 in this

condition, so the 65520 will be assigned to pt. a=*pt will

assign the value at address 65520 i.e. 0 to variable a, then

control will enter to the condition part check the condition

which is true and the pt[-a] will be printed

Meaning of pt[-a]

a=0

pt[-0] ----------- means *(pt-0) -------------- *(pt)--------

-------0

second time a will become 1 and pt[-1] will be evaluated as

pt[-1]---------means *(pt-1) ---------*(65520-1)--------

*(65518)----1

third time value of variable a will become 2 and pt[-2] will

be evaluated as

pt[-2]---------means *(pt-2) ---------*(65520-2)--------

*(65516)----2

four and final time value variable a will become 3 and pt[-

3] will be evaluated as

pt[-3]---------means *(pt-3) ---------*(65520-3)--------

*(65514)----3

and finally the output will be

0

 0

5

 5

‘C’ Scope

1

2

3

4

Ex. 1.

Program to implement pointer arithmatics

#include <stdio.h>

main()

{

static int

num[]={4,3,2,1,0},*pt[]={num,num+1,num+2,num+3,num

+4};

int **p=pt;

clrscr();

printf ("\n%u",num);

printf ("\n%d",*num);

printf ("\n%u",pt);

printf ("\n%u",*pt);

printf ("\n%d",**pt);

printf ("\n%u",p);

printf ("\n%u",*p);

printf ("\n%u",**p);

p++;

printf ("\n\n%d",p-pt);

printf ("\n%d",*p-num);

printf ("\n%d",**p);

printf ("\n%d",*p[-0]);

*p++;

printf ("\n\n%d",p-pt);

printf ("\n%d",*p-num);

printf ("\n%d",**p);

‘C’ Scope

printf ("\n%d",*p[-1]);

*++p;

printf ("\n\n%d",p-pt);

printf ("\n%d",*p-num);

printf ("\n%d",**p);

printf ("\n%d",*p[-2]);

++*p;

printf ("\n\n%d",p-pt);

printf ("\n%d",*p-num);

printf ("\n%d",**p);

printf ("\n%d",*p[-3]);

getch();

}

****output****

170

4

180

170

4

180

170

4

1

1

3

3

2

2

‘C’ Scope

2

3

3

3

1

3

3

4

0

4

Memory map for given program

 170 172 174 176 178

num

 0 1 2 3 4

 180 182 184 186 188

pt
 0 1 2 3 4

p

How to Understand ?

Start evaluating from line No. 7

 4

5

 5

 3

5

 5

 2

5

 5

 1

5

 5

 0

5

 5

170 172

5

 5

174

5

 5

176

5

 5

178

5

 5

 180

5

 5

Index of

array

‘C’ Scope

printf ("\n%u",num);

The value of num is the starting address of num i.e. 170

hence the output for this statement will be 170.

Now let us evaluate the line No. 8

printf ("\n%d",*num);

here the meaning of * is value at address if we expand the

statement *num will become *170 means the value at

address 170 which is 4 the output of the line no. 8 will be 4

evaluate line no. 9

printf ("\n%u",pt);

pt will print the starting address of pt which is 180,

therefore the output for the line no. 9 will be 180.

Evaluate line no. 10

printf ("\n%u",*pt);

here the meaning of * is value at address if the we expand

the statement *pt will become *180, therefore the value at

address 180 which is 170 the output of the line no. 10 will

be 170.

Evaluate line no. 11

printf ("\n%d",**pt);

In this statement pt has the starting address of array pt[]

which is 180 **pt can be expanded as *(*(pt)) here *pt is

‘C’ Scope

170 and *(170) (value at address 170) is 4 therefore the

output of line no. 11 will be 4.

Evaluate line no. 12

printf ("\n%u",p);

Here p has the base address of array pt[] which is 180 there

the output for the line no. 12 will be 180.

Evaluate line no. 13

printf ("\n%u",*p);

Here p has the value 180 the *p means value at 180 which

is 170 therefore the output of line no. 13 will be 170

Evaluate line no. 14

printf ("\n%u",**p);

in line no. 13 we have evaluated *p which is 170 and **p

can be expanded as *(170) which is 4 hence the output of

line no. 14 will be 4.

Evaluate the line no. 15

p++;

this will increase the value of p and the value of p will

become 182 and the memory map will be change like this

‘C’ Scope

 170 172 174 176 178

num

 0 1 2 3 4

 180 182 184 186 188

pt
 0 1 2 3 4

p

now evaluate the line no. 16

printf ("\n\n%d",p-pt);

Now try to evaluate the meaning of p-pt. in this statement p

is containing the value 182. And pt is containing the value

base address of pt which is 180, and hence 182-180 will be

evaluated and the output of line no. 16 will be 1. (because

1 integer occupies two bytes of memory).

Now evaluate the line no. 17.

printf ("\n%d",*p-num);

in line no. 17 p contains the value 182 and *(182) is 172.

Num contains the base address of array num[] which is 170

hence the output of *p-num will be 172-170 which yields 1.

 4

5

 5

 3

5

 5

 2

5

 5

 1

5

 5

 0

5

 5

170 172

5

 5

174

5

 5

176

5

 5

178

5

 5

 182

5

 5

Index of

array

‘C’ Scope

Now evaluate line no. 18

printf ("\n%d",**p);

in previous statement we have checked the *p is 172 and

value at 172 is 3 the expression can be expanded as

((182) therefore the output will be 3.

Now evaluate line no. 19

printf ("\n%d",*p[-0]);

now expand p[-0] as *(p-0) which is *p and the *p[-0] will

**p. and value at 182 is 172 and the value at 172 is 3 and

therefore the output of line 19 will be 3.

Evaluate line no. 20

*p++;

This will increase the value of p from 182 to 184 and

memory map will be changed like this

 170 172 174 176 178

num

 0 1 2 3 4

 180 182 184 186 188

pt
 0 1 2 3 4

 4

5

 5

 3

5

 5

 2

5

 5

 1

5

 5

 0

5

 5

170 172

5

 5

174

5

 5

176

5

 5

178

5

 5

‘C’ Scope

p

now evaluate line no. 21

printf ("\n\n%d",p-pt);

in this statement p has the value 184 and pt contains the

base address of array pt[] which is 180. After evaluating

184-180 the output will be 2.

Now evaluate line no. 22

printf ("\n%d",*p-num);

Meaning of *p is the value at address 184 which is 174 and

meaning of num is base address of array num[] which is

170. Now *p-num will be 174 - 170 which yields 2.

Now evaluate line no. 23

printf ("\n%d",**p);

in previous statement we have checked the *p is 174 and

value at 174 is 2 the expression can be expanded as

((184) therefore the output will be 2.

Now evaluate line no. 24

printf ("\n%d",*p[-1]);

 184

5

 5

Index of

array

‘C’ Scope

now expand p[-1] as *(p-1) which is *(184-1) which is

*(182) and the *p[-1] will **(182). Which is 3.

Now evaluate line no. 25

*++p;

 170 172 174 176 178

num

 0 1 2 3 4

 180 182 184 186 188

pt
 0 1 2 3 4

p

This ++ increase the value of p from 184 to 186. After this

we are using * which in not used for any other operation so

this * has to be ignored.

Now that you have practiced so many pointer expressions,

you can easily evaluate the result of statement nos.

26,27,28 and 29 respectively.

Now evaluate statement no. 30

++*p;

 4

5

 5

 3

5

 5

 2

5

 5

 1

5

 5

 0

5

 5

170 172

5

 5

174

5

 5

176

5

 5

178

5

 5

 184

5

 5

Index of

array

‘C’ Scope

 170 172 174 176 178

num

 0 1 2 3 4

 180 182 184 186 188

pt
 0 1 2 3 4

p

In this statement preference will be given to *. So this

expression will increment the value given by *p. and the *p

is 176 which will be incremented and 176 will become 178

as shown in memory map.

Now try to evaluate the statements no. 31, 32, 33 and 34.

#include <stdio.h>

main()

{

int num[3][3],*pt,i,j,k=0;

clrscr();

pt=num;

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 4

5

 5

 3

5

 5

 2

5

 5

 1

5

 5

 0

5

 5

170 172

5

 5

174

5

 5

176

5

 5

178

5

 5

 184

5

 5

index of

array

‘C’ Scope

 num[i][j]=k++;

 }

}

printf ("\n%u",num);

*pt++;

printf ("\n%u",pt);

printf ("\n%u",num+1);

printf ("\n%d",pt[1]);

printf ("\n%u",num[1]);

printf ("\n%d",*(pt+1));

getch();

}

****output****

65504

 65506

 65510

 2

 65510

 2

 0 1 2 0 1 2 0 1 2

num

 0 1 0

 65504 65510 65516

6
5

5
0
4

6
5

5
0
6

6
5

5
0
8

6
5

5
1
0

6
5

5
1
2

6
5

5
1
4

6
5

5
1
6

6
5

5
1
8

6
5

5
2
0

 0 1 2 3 4 5 6 7
 8

 8

‘C’ Scope

pt

Statement no. 14

printf ("\n%u",num);

num is an array so only num will contain the base address

of the array, and hence the output would be 65504 which is

the base address of num.

statement no. 15

*pt++

Value stored at pt will be incremented this will become

65506. And asterisk will be ignored because after

increment we are not using this for any other operation.

 0 1 2 0 1 2 0 1 2

num

 0 1 0

 65504 65510 65516

pt

6
5

5
0
4

6
5

5
0
6

6
5

5
0
8

6
5

5
1
0

6
5

5
1
2

6
5

5
1
4

6
5

5
1
6

6
5

5
1
8

6
5

5
2
0

65504

 0 1 2 3 4 5 6 7
 8

65504

 8

‘C’ Scope

statement no. 16

printf ("\n%u",pt);

this will print the value of pt i.e 65506.

Statement no. 17

printf ("\n%u",num+1);

since variable contains the base address of num i.e 65504

and this is the 2nd array and if we increase the value by one

the this will go to the address of second array i.e. 65510.

Statement no. 18

printf ("\n%d",pt[1]);

now expand pt[1] ie. *(pt+1) *(65506+1) *(65508)

ie. 2

statement no. 19

printf ("\n%u",num[1]);

this will print the base address of num[1] ie. 65510.

Statement no. 20

printf ("\n%d",*(pt+1));

This will print the value at (65506+1) i.e value at 65508 ie.

2.

‘C’ Scope

 0 1 2 3 4

0 1 2 3 0 1 2 3 4 5 0 1 2 3 0 1 2 3 4 0 1 2 3

str

pt

 0 1 2 3 4

65400 65402 65404 65406 65408

s

#include <stdio.h>

main()

{

static char *str[]={"tom","jerry","tim","jack","sue"};

static char **pt[]={str+4,str+3,str+2,str+1,str};

char ***s=pt;

clrscr();

printf ("\n line no. %s",**s++ + 2);

printf ("\nline no. 1 %s",**++s);

printf ("\nline no. 2 %s",*--*++s + 2);

6
5

5
1

0

 6
5

5
1

1

 6
5

5
1

2

 6
5

5
1

3

 6
5

5
0

4

 6
5

5
1

4

 6
5

5
1

5

 6
5

5
1

6

 6
5

5
1

7

 6
5

5
1

8

 6
5

5
1

9

 6
5

5
2

0

 6
5

5
2

1

 6
5

5
2

2

 6
5

5
2

3

 6
5

5
2

4

 6
5

5
2

5

 6
5

5
2

6

 6
5

5
2

7

 6
5

5
2

8

 6
5

5
2

9

 6
5

5
3

0

 6
5

5
3

1

T o M % J

E R R Y % T I M % J A C K % S U E %

65400

 (S+4)

 65529

 (S+3)

 65524

 (S+2)

 65520

 (S+1)

 65514

 (S+4)

 65510

‘C’ Scope

printf ("\nline no. 3 %s",*s[-2]+2);

printf ("\nline no. 4 %s",s[-2][-1]+2);

getch();

}

 line no. e

line no. 1 tim

line no. 2 m

line no. 3 ck

line no. 4 m

Now we will see how this memory map will be made. First

we will see the memory map of STR

 0 1 2 3 4

0 1 2 3 0 1 2 3 4 5 0 1 2 3 0 1 2 3 4 0 1 2 3

str

In the declaration part of the program STR will work as 2D

array and the stringS will occupy the memory according to

its contents which is shown in figure

TOM will occupy 4 bytes of memory.

JERRY will occupy 6 bytes of memory.

TIM will occuspy 4 bytes of memory.

JACK will occupy 5 bytes of memory.

SUE will occupy 4 bytes of memory.

6
5

5
1

0

 6
5

5
1

1

 6
5

5
1

2

 6
5

5
1

3

 6
5

5
0

4

 6
5

5
1

4

 6
5

5
1

5

 6
5

5
1

6

 6
5

5
1

7

 6
5

5
1

8

 6
5

5
1

9

 6
5

5
2

0

 6
5

5
2

1

 6
5

5
2

2

 6
5

5
2

3

 6
5

5
2

4

 6
5

5
2

5

 6
5

5
2

6

 6
5

5
2

7

 6
5

5
2

8

 6
5

5
2

9

 6
5

5
3

0

 6
5

5
3

1

T o M % J

E R R Y % T I M % J A C K % S U E %

‘C’ Scope

According to this figure the value of STR will be 65510

and STR +1 will be the base address of second dimension

of STR which is 65514. Accordingly STR +2 will be the

base address of third dimension of STR which is 65520,

STR +3 will be the base address of fourth dimension of

STR which is 65524, STR +4 will contain the base address

of fifth dimension of STR which is 65529.

Now according to the second declaration statement i.e.

static char **pt[]={str+4,str+3,str+2,str+1,str};

The memory map will be as follows ;-

pt

0 1 2 3 4

 65400 65402 65404 65406 65408

And according to the third declaration statement i.e. char

***s=pt;

The memory map will be as follows ;-

s
 65300

statement no. 8

printf ("\n line no. %s",**s++ + 2);

As per the statement value of s is 65400 so **s will be

65529 and adding 2 to this address will extract the value at

65531 which yields the character „e‟. After printing the

value „e‟ ++ will be calculated because it is post increment

operator.

Current value of S is now :-

 (S+4)

 65529

 (S+3)

 65524

 (S+2)

 65520

 (S+1)

 65514

 (S+4)

 65510

65400

‘C’ Scope

s
 65300

statement no. 9

 printf ("\nline no. 1 %s",**++s);

now split this statement as ++s will increment the value to

65404 and value at this address is 65520 and further the

next * will yield the value at this address 65520 i.e. string

„TIM‟

Current value of S is now :-

s
 65300

statement no. 10

printf ("\nline no. 2 %s",*--*++s + 2);

Splitting the above statement first ++s will be calculated

and the value of s will become 65406. Now value at this

address is 65514. After calculating – will send the control

to the previous dimension which is 65510 and +2 will print

value at address 65512 i.e. the character „M‟ .

Current value of S is now :-

s
 65300

statement no. 11

65402

65404

65406

‘C’ Scope

printf ("\nline no. 3 %s",*s[-2]+2);

Expanding the above statement the *s[-2] we get *(*(s-2))

and *(*(65506-2))will be calculated first and the value of

*(*s) will become 65402. Now the value at 65402 is 65524

and after adding 2contol will be transferred to 65526 and

will print the value at address i.e. string “CK”

Current value of S is now :-

s
 65300

statement no. 12

printf ("\nline no. 4 %s",s[-2][-1]+2);

Expanding the above statement we get *(*(s-2)-1) + 2.

Now subtracting 2 the value of s becomes 65402. The value

at this address is 65524. Now subtracting 1 we get the

address of previous dimension i.e. 65520. Now finally

adding 2 to this address the value at 65522 will print „m‟.

Summary

 A pointer can be defined as a variable which can

contains the address of another variable.

 A normal variable can not hold the address of

another variable.

 Pointers are the special variables have the capability

to hold the address of other variables.

 Void pointers can't be dereferenced without explicit

casting. This is because the compiler can't

determine the size of the object the pointer points

to.

65406

‘C’ Scope

Self Review

Q1. What is the difference between null pointers and

dangling pointers?

Q2. What is the difference between near & far pointer?

Q3. Explain the meaning of pointer to pointer?

Q4. What your opinion about pointers? Area they boon

or bane? Justify your answer?

Q5. Write a program to sort an array using pointers?

Q6. Write a program to input & manipulate

multidimensional array using pointers ? Preferably

perform matrix multiplication using pointers?

Q7. Write a program to print Fibonacci series using

pointers?

‘C’ Scope

CHAPTER – 7

Functions

Students..! You always used main() in every „C‟ Program.

What is main() ?

The answer is that it is a function. In „C‟ Every Program

code is written in a boundary called function.

What is a function?

It is a Self contained Block of Program Which performs a

Specific Task.

In „C‟ There are two types of functions

[1] Library Defined

[2] User Defined

[1] Library Defined Functions

Library defined Functions are provided by the „C‟ compiler

and user can use these functions in their program wherever

they want any number of times freely and for every

function the appropriate header file must be included.

e.g pow() is a library function which is declared in math.h

header file and returns the power.

‘C’ Scope

x=pow(2,3);

printf (“%d”,x);

will print 8 i.e. (2
3
)

e.g sqrt() is a library function declared in math.h library file

that returns square root of a number.

Ex. 1.

Program to find solution of a Quadratic Equation

#include <math.h>

main()

{

 float a,b,c,d,r1,r2;

 clrscr();

 printf ("Enter the value for a :");

 scanf ("%f",&a);

 printf ("Enter the value for b :");

 scanf ("%f",&b);

 printf ("Enter the value for c :");

 scanf ("%f",&c);

 d=pow(b,2)-4 * a *c;

 if (d< 0)

 printf ("Roots are imaginary : ");

 else

 {

 r1=(-b + sqrt(d))/(2.0 *a);

 r2=(-b - sqrt(d))/(2.0 *a);

 printf ("\n Roots are %6.2f and %6.2f ",r1,r2);

 }

getch();

‘C’ Scope

}

Another example of Library function is strlen() which

returns the length of the string and strrev() which reverses

the given string are declared in string.h Header File.

The functions that are already declared and defined and are

available with the „C‟ compiler are known as Library

Functions.

Library functions help you in compact and efficient coding

as well as in faster development of both simple and

complex programs.

#include<stdio.h>

main()

{

 char str[20]=”scope”;

 int i,len;

 for(i=0;str[i];i++);

 for(i--;i>=0;i--)

 {

 printf (“%c”,str[i]);

 }

}

here is a program that reverses the given string, we can do

the same job using library function in more efficient way as

..

#include<string.h>

#include<stdio.h>

main()

‘C’ Scope

{

 char str[20]=”scope”;

 printf(“%s”,strrev(str));

}

OUTPUT #####

 epocs

Now it is very clear that library function helps user a lot in

program development.

[2] User defined functions

These functions are defined & made by the user for specific

requirements.

#include<stdio.h>

main()

{

 scope();

 jss();

 race();

}

scope()

{

 printf (“\nSchool For Computer Operator‟s and

Programmer‟s Education“);

}

jss()

{

‘C’ Scope

 printf (“\nJai Shikshan Sansthan”);

}

race()

{

 printf (“\nRajasthan Academy for Computer Education”);

}

The Result of the said program is

School for computer operator‟s and programmer‟s

education

Jai Shikshan Sansthan

Rajasthan Academy for Computer Education

Here we have four functions where main is the calling

function, and is calling three functions named scope (),

jss(), race().

In first line scope(), main is calling a function named

scope() and transferring the program control to that block

and prints the line

School for computer operator‟s and programmer‟s

education.

After the complete execution of scope() the control backs

to the main(). After this the next line of main() i.e. jss() it

takes control to jss() and prints the line

 Jai Shikshan Sansthan

Similarly third line

Rajasthan academy of computer education

‘C’ Scope

Will be printed.

#include<stdio.h>

main()

{

 scope();

 jss();

}

scope()

{

 printf (“School for computer operator‟s and programmer‟s

education “);

 jss();

}

jss()

{

 printf (“Jai Shikshan Sansthan”);

}

OUTPUT #####

School for computer operator‟s and program‟s education

Jai Shikshan Sansthan

Jai Shikshan Sansthan

Types of user defined functions

(1) No arguments and no return value

(2) No argument but with return value

(3) With arguments and with return value

‘C’ Scope

(1) No arguments and no return value

The above example illustrates the function with no

arguments and no return value.

(2) No arguments but return value

#include<stdio.h>

main()

{

 int a;

 a=sum();

 printf (“%d”,a);

}

sum()

{

 int i=10,j=15,k;

k=i+j;

return(k);

}

result is 25.

(3)Functions with arguments and return values

#include<stdio.h>

main()

{

 int i=10,j=15,k;

 k=sum(i,j);

 printf (“%d”,k);

In this program main is calling sum

function.

The sum function initializes two

variables i and j with value 10 and

15 respectively and stores the sum

in k i.e. 25 and the third statement

of function sum returns the value

of k to the main function, which is

stored in the variable a.

And finally the value of variable a

is printed.

i and j are the arguments passed to

the function sum from the calling

function i.e main function.

And here is it is known actual

arguments

NOTE : arguments are the values

passed along with the function call.

‘C’ Scope

}

sum(int a, int b)

{

 return (a+b);

}

Note: The number and arguments and their types must be

same for both actual and formal arguments (parameters)

#include<stdio.h>

main()

{

 float a=1.2,b=1.6;

 printf (“%f”,sum(a,b));

}

sum(float x,float y)

{

 return(x+y);

}

The above program will produce an error. Because sum ()

is returning the value that is float. By default every function

returns integer value. But we can make function to return

values other than integers. For this we need to declare the

function before calling and that is known as function

prototyping, so the modified form of the above program is

In function definition the values

passed by the calling function

during function‟s call is received by

the variable a and b respectively for

i and j here a and b are termed as

the formal arguments.

‘C’ Scope

#include<stdio.h>

main()

{

 float a=1.2,b=1.6,sum(float,float);

 printf (“%1.1f”,sum(a,b));

}

float sum(float x,float y)

{

 return(x+y);

}

OUTPUT #####

2.8

Note: it is necessary to declare the functions and it‟s return

type. But if the function is returning integer or character

type value it not necessary to write the prototype.

Concept of call by value and call by reference

1. Call By Value

In call by value a function is called by supplying it to a

value.

Ex. 2.

Program to swap two numbers using call by value

#include<stdio.h>

main()

{

‘C’ Scope

 int a=10,b=12;

 printf (“\nThe Value of a and b before swapping is “);

 printf (“\na=%d b=%d”,a,b);

 swap(a,b);

 printf (“\nThe Value of a and b after swapping is “);

 printf (“\na=%d b=%d”,a,b);

}

swap(int a, int b)

{

 int c;

 c=a;

 a=b;

 b=c;

 printf (“\nThe Value of a and b in swap function is “);

 printf (“\na=%d b=%d”,a,b);

}

OUTPUT #####

The value of a and b before swapping is

a=10 b=12

The value of and in swap function is

a=12 b=10

The value of a and b after swapping is

A=10 b=12

In the above examples in main function the values of a and

b are 10 and 12 respectively but in swap function it is 12

and 10 respectively even after the value of a and b remains

same i.e 10 and 12 respectively. The reason is in call by

value every functions maintains the separate copy of the

‘C’ Scope

variables hence changing the value of variable does not

effects the value of variables in other functions.

2. Call by reference

In call by reference we pass the address of the variable

instead of value as given below.

Ex. 3.

Program to swap between two numbers using call by

reference

main()

{

 int a=10,b=12;

 printf (“\nThe Value of a and b before swapping is “);

 printf (“\na=%d b=%d”,a,b);

 swap(&a,&b);

 printf (“\nThe Value of a and b after swapping is “);

 printf (“\na=%d b=%d”,a,b);

}

swap(int *a, int *b)

{

 int c;

 c = *a;

*a = *b;

*b = c;

printf (“\nThe Value of a and b in swap function is “);

printf (“\na=%d b=%d”,*a,*b);

}

‘C’ Scope

OUTPUT #####

The result is

The value of a and b before swapping is

a=10 b=12

the value of and in swap function is

a=12 b=10

The value of a and b after swapping is

a=12 b=10

In above program we are passing the address of a and b to

swap function and swap functions is receiving the address

of these variables through pointers and this causes only one

copy of value to be available for both modules and hence

changes made at one functions are reflected to other

function.

Advantage of call by references

(1) function can return more than one value at a time

(2) single copy of variables can be used among many

functions.

Ex. 4.

Passing Array to a functions

#include<stdio.h>

main()

{

 char str[20]="scope";

 clrscr();

‘C’ Scope

 upper(str);

 puts(str);

}

upper(char *nstr)

{

 int i;

 for(i=0;nstr[i];i++)

 {

 nstr[i]=nstr[i]-32;

 }

}

In above program the character array can be passed to the

called functions simply by passing the base address of str.

And as we know we can get the address of a variable only

in the pointer variable so in called function we use char

*nstr to collect the base address of str.

Ex. 5.

Program to show roman numerals of decimal numbers

#include<stdio.h>

main()

{

 int no;

 clrscr();

 printf ("Enter the number : ");

 scanf ("%d",&no);

 fflush(stdin);

 yr=roman(no,1000,'m');

 yr=roman(no,500,'d');

 yr=roman(no,100,'c');

‘C’ Scope

 yr=roman(no,50,'l');

 yr=roman(no,10,'x');

 yr=roman(no,5,'v');

 yr=roman(no,1,'i');

 getch();

}

roman(int y,int k, char ch)

{

 int i,j;

 if(y==9)

 {

 printf ("ix");

 return(y%9);

 }

 if(y==4)

 {

 printf("iv");

 return(y%4);

 }

 j=y/k;

 for(i=1;i<=j;i++)

 {

 printf ("%c",ch);

 }

 return(y-k*j);

}

OUTPUT #####

Enter a Number : 500

USES

‘C’ Scope

(1) It helps you in top down modular programming i.e. a

complex problem can be divided into simple modules.

(2) It makes testing and debugging very easy and fast.

(3) The repeated statements in a program can be avoided

by use of functions which makes program code

compact.

(4) A function can be used by many other programs.

RECURSION

In previous section you have learned about the functions.

But what happened when a function call itself?

When a function calls itself then this is knows as recursion.

In mathematics and computer science the meaning of

recursion is self reference.

In recursion actually what happens is that the functions has

an anchor statement that again and again calls itself & this

calling‟s termination or in action depends upon a particular

condition.

Here a stack is allocated to the recursive function, every

time it calls itself the statement is pushed into the stack.

When the termination condition is met the items are popped

out of the stack & actions according to that are performed.

Let‟s see an example to this…

Recursion can be explained by the following example.

Ex. 6.

Program to factorial of a iven number using recursion

‘C’ Scope

#include <stdio.h>

main()

{

 int n;

 clrscr();

 printf ("Enter a value for factorial : ");

 scanf ("%d",&n);

 printf ("%d",fact(n));

 getch();

}

fact (int n)

{

 int x=1;

 if (n==0)

 return 1;

 else

 return(n*fact(n-1));

}

OUTPUT #####

Enter a value for factorial : 5

120

We know that for every positive integer the factorial of n is

n! = n*(n-1)!

Step 1. to computer 5!, 5 will passed by the main function

to factorial function and in factorial function the

computation of 5! will be sent to the stack and it will try to

compute 4!.

Step 2. In this step to compute 4! it will send the due work

to the stack and try to compute the 3!

Push

‘C’ Scope

Step 3. In this step to compute 3! it will send the due work

to the stack and try to compute the 2!

Step 4. In this step to compute 2! it will send the due work

to the stack and try to compute the 1!

Step 5. In this step to compute 1! it will send the due work

to the stack and try to compute the 0!

Step 6. In this step to compute 0! it is equals to 1.

Step 7. It will be returned to the stack and compute the 1!

using the value of 0!.

Step 8. Will be returned to the next due work in stack and

compute 2! using the value of 1!

Step 9. Will be returned to the next due work in stack and

compute 3! using the value of 2!

Step 8. Will be returned to the next due work in stack and

compute 4! using the value of 3!

Step 8. Will be returned to the next due work in stack and

compute 5! using the value of 4!

Step 9. Finally the 5! will be calculated and returned to the

original function (main) and print the 5! value.

Ex. 7.

To find the Greatest Common divisor using Euclid's

Algorithm with recursion

gcd(int a,int b)

{

 if((a>=b) && ((a%b)==0))

 return(b);

 else

 gcd(a,(a%b));

}

void main()

{

‘C’ Scope

 int a,b,res;

 clrscr();

 printf("Enter the first number \n");

 scanf("%d",&a);

 printf("\n Enter the second number \n");

 scanf("%d",&b);

 res=gcd(a,b);

 printf("\n Greatest Common Divisor is : %d",res);

 getch();

}

OUTPUT #####

Enter the first number

10

 Enter the second number

15

 Greatest Common Divisor is : 10

A function is called recursive if it calls it self or calls one

function that calls another and so on until the first is

called again.

Types of recursions

a. Preemptive recursive function.

b. Non-Preemptive recursive

function.

Ackerman‟s function (non-preemptive)

‘C’ Scope

Let F is a function

F(a,b)

b=1 if a=0

F(a-1,1) if b=0

else

F(a-1,a(a,b-1))

When a function call itself as an argument to itself. This is

Ackerman‟s function and is a very typical situation of

recursion.

Ex. 8.

Program to compute number using recursion

int fibo(int num)

{

 if (num <=1)

 return num;

else

 return (fibo(n-1) + fibo(n-2));

}

Tower of Hanoi Game

This is the very famous example of recursion. This game

consists of three polls and a set of disks of increasing size.

Initially all the disks are available in first poll, and you

have to move all the disks from the poll a to poll c, with the

help of auxiliary poll b.

Rules

‘C’ Scope

1. You can move only one disk at a time.

2. You can move the disk from the top only

3. No bigger disk can be placed on to the smaller disk

Your program should ask for the number of disks, and

display the sequence of replacement.

If numbers of disks are four, then it will take 15

replacements.

Now try to play this game manually and get three polls and

64 disks, and start replacement manually and contact me

when you get the success to move all the disks following

all the rules of this game. I will wait for you.

This process will not take a long time it will take only

around 8760000000000000 hours or 1000000000000 Years

to be completed.

So friends, please try it.....

Ex. 9.

Program to implement Tower of Hanoi

#include <stdio.h>

main()

{

 int num;

 clrscr();

 printf ("Enter number or disks : ");

 scanf ("%d",&num);

 fflush(stdin);

‘C’ Scope

 hanoi('a','c','b',num);

}

hanoi(char a,char b,char c,int num)

{

 if (num==1)

 printf ("Move disk from %c to %c \n",a,b);

 else

 {

 hanoi(a,c,b,num-1);

 hanoi(a,b,c,1);

 hanoi(c,b,a,num-1);

 }

}

OUTPUT #####

Enter number or disks :

1. Move disk from a to b

2. Move disk from a to c

3. Move disk from b to c

4. Move disk from a to b

5. Move disk from c to a

6. Move disk from c to b

7. Move disk from a to b

8. Move disk from a to c

9. Move disk from b to c

10. Move disk from b to a

11. Move disk from c to a

12. Move disk from b to c

13. Move disk from a to b

14. Move disk from a to c

15. Move disk from b to c

‘C’ Scope

Ex. 10.

Program to reverse individual characters of line of string

#include <stdio.h>

main()

{

 clrscr();

 printf ("Enter a line of text :");

 rev();

}

rev()

{

 char ch;

 if ((ch=getchar())!='\n')

 rev();

 putchar (ch);

 return;

}

OUTPUT #####

Enter a line of text :This book is written by Nishat

tahsiN yb nettirw si koob sihT

Ex. 11.

Program to reverse the Name order

#include <stdio.h>

char *name[]={

‘C’ Scope

 "Nishat",

 "Raman",

 "Vaneja",

 "Ranjan" ,

 "Vishal",

 };

OUTPUT #####

Vishal

Ranjan

Vaneja

Raman

Nishat

main()

{

 clrscr();

 display(name);

 return(0);

}

display (char **nam)

{

 if (*nam != 0)

 {

 display(nam +1);

 printf ("\n%s",*nam);

 }

}

Ex. 12.

Program to convert decimal number into Binary

‘C’ Scope

#include <stdio.h>

main()

{

 int num;

 clrscr();

 printf ("Enter a number : ");

 scanf ("%d",&num);

 binary(num);

 getch();

}

binary (int num)

{

 if (num<=0)

 return;

 else

 {

 binary(num /2);

 printf ("%d",num%2);

 }

}

OUTPUT #####

Enter a number : 75

1001011

Depth of Recursion:

Let F is a recursive function. When F is called it is assigned

by a level number 1 and each time it is called recursive

‘C’ Scope

level number increases by one. So number of levels is one

more that level of execution.

The depth of recursion refers to the maximum level number

of F during its execution.

Summary

 Function can return one value at a time, but a

function can have more than one statement using

conditional constructs.

 Functions should return a value but if a function is

not returning any value is called as void function

and must be declared with keyword void as a return

type.

 Any function can be called any number of times

 Every „C‟ program must have one main function.

 Functions prototyping is must in case of functions

returning values other than int and char type.

 The position of main() can be any where in the

program.

 Every programme must have one and only one

main()

 During function call with arguments the number

and data types in calling and called functions must

be the same.

 Every time when the function calls itself it must be

closer the condition for which it comes out.

 A recursive function must not be continuing

infinitely, there must be a condition, for which the

function does not call itself.

 It is used to solve the complex problems easily that

would be difficult using iterative method (loops).

‘C’ Scope

Self Review

Q1. Write functions to implement the following without

using built-in functions?

a. Finding Length of string

b. Comparing two strings

c. Checking whther the string is palindrome

d. Swapping two strings

e. Increamenting alphabets of strings

f. Converting a string to lower & upper case

Q2. Write a user defined function to implement 8-queen

problem using recursion?

Q3. Write a program to quicksort using loops as well as

recursion?

Q4. Write a program to implement Bredth First Search

& Depth First Search?

Q5. Write a program to implement binary search using

recursion?

Q6. Write a program to find power of a number using

recursive function?

Q7. Write a program to write a recursive function heap

sort?

‘C’ Scope

CHAPTER - 8

Storage class specifiers

Every variable has got a storage specifier which tells :

(1) where the data will be stored (ram or cpu registers)

(2) what will be it‟s life and

(3) what will be it‟s default initial value.

(4) What is the scope of the variable.

(5) Whether the variable has any external linkage or not.

(6) Whether the variable is statically available or

automatically available for use during execution.

„C‟ provides four types of storage class specifiers. That are

used to refine the declaration of a variable, a function, and

parameters.

Life of a variable:

1. Auto

A variable a having automatic storage is deleted when the

block in which a was declared exits.

You can only apply the auto storage class specifier to

names of variables declared in a block or to names of

function parameters. The storage class specifier auto is

usually redundant in a data declaration.

‘C’ Scope

By default all the data types are treated as auto class

specifiers and

(1) The default initial value is junk value (Garbage)

(2) Always stored in memory (RAM)

(3) Life is till the program control is in the block in which

variable is declared.

(4) (Scope) - In the block where it is defined.

Ex. 1.

Program to swap numbers using Call by Value Procedure

#include<stdio.h>

main()

{

 auto int i,j,k;

 i=10;

 j=12;

 swap(i,j);

 printf (“the values of i and j in main function are i=%d

j=%d”,i,j);

}

swap(int i,int j)

{

 int k;

 k=i;

 i=j;

 j=k;

 printf (“the values of i and j in swap function are i = %d

j=%d”,i,j);

}

‘C’ Scope

OUTPUT #####

The values of i and j in main functions are i=10 j=12

The values of i and j in swap functions are i=12 j=10

So the values of i and j are different in main and swap

hence we can say that the scope of auto storage class

specifiers is limited to the block where there are declared.

2. Register

The register storage class specifier indicates to the compiler

that the value of the object should reside in a machine

register. The compiler does not honor this request.

It occupies limited size because number of registers

available on most systems, variables can actually be placed

in registers.

If the compiler does not allocate a machine register for a

register object, the object is treated as having the storage

class specifier auto because we are only requesting not

forcing the compiler to store the variable or object in CPU

register. A register storage class specifier shows that the

variable, such as a loop control variable, that is heavily

used and that the programmer hopes to enhance

performance by minimizing access time and also the

execution time.

Let‟s work on one of its example…

‘C’ Scope

Ex. 2.

Program to implement register specifier

#include<stdio.h>

void main()

{

 register int i;

 clrscr();

 for(i=0;i<10;i++)

 printf("%d ",i);

 getch();

}

OUTPUT #####

0 1 2 3 4 5 6 7 8 9

3. Static

Variables declared with static storage class specifier have

static storage, that is only once the memory is allocated to

these objects when program‟s execution begins & memory

is freed only when the program terminates.

Here the scope of static variable is local to the block. The

static variable once initialized retains the value &

manipulations in that value till the program are terminated.

Let us see a program:-

Ex. 3.

Write program to compare between static and auto storage

class specifier.

‘C’ Scope

void mystring(char *str)

{

 static int i=0;

 int j;

 printf("\n");

 for(j=i;j<strlen(str);j++)

 printf("%c ",str[j]);

 i++;

}

void main()

{

 char *str;

 clrscr();

 printf("\n Enter the string \n");

 scanf("%s",str);

 mystring(str);

 mystring(str);

 mystring(str);

 mystring(str);

 getch();

}

OUTPUT #####

Enter the string

scope

s c o p e

c o p e

o p e

p e

if the above program written

without using static keyword the

 scenario would have been

like this.

void mystring(char *str)

{

 int i=0;

 int j;

 printf("\n");

 for(j=i;j<strlen(str);j++)

 printf("%c ",str[j]);

 i++;

}

void main()

{

 char *str;

 clrscr();

 printf("\n Enter the string \n");

 scanf("%s",str);

 mystring(str);

 mystring(str);

 mystring(str);

 mystring(str);

 getch();

}

OUTPUT #####

Enter the string

scope

s c o p e

s c o p e

s c o p e

s c o p e

‘C’ Scope

In the first program that used static variable i, the value of

i, is retained throughout the program that again & again

when i is incremented the value of i increases with respect

to the previous value of i & not initialized to a value

previously initialization used i.e it retain the value of i &

every time when j is given the value of i for loop shifts the

string printing by one place.

On the other hand if the variable i is not declared as static

then every time when the function is called, every time the

value of i is set/initialized to value 0(zero). So every time

the for loop prints the whole string & also its increment

statement part does not proves to be fruitful because every

time a new local variable is assigned a new memory that is

for i , & auto variables do not retain the value in memory if

it is not in use i.e they are freed when the block is freed, &

are reassigned when block/function is called for.

4. Extern

The variable declared using extern storage class specifier

are stored in memory with default zero initial value and

continue to stay within the memory until the execution of

the program is not terminated.

Variables declared as extern can be accessed by all

functions in the program, which is they act like global

variable that can be accessed & used by all blocks in the

program, thus avoiding unnecessary passing of these

variables as arguments during function call.

‘C’ Scope

Variables declared outside any function definition are

treated as variables with extern storage class (can also be

said as global).

Using extern as storage specifier also enables the user to

take many functions from outside the program or any other

file, thus increasing the degree of code reuse.

Let us see its program in action…

Ex. 4.

Program to show use of extern keyword

 #include<stdio.h>

extern int i=5;

void func()

{

 printf("inside func i = %d",i);

}

void main()

{

 clrscr();

 func();

 i++;

 printf("\n inside main i = %d",i);

 getch();

}

OUTPUT #####

inside func i = 5

inside main i = 6

‘C’ Scope

In the above program i is declared as extern variable whose

scope & life persists till the end of the program. Here the

extern variable i , act as global & its scope remains

throughout the program, that is why it can be accessed

anywhere in the program.

Summary

 „C‟ provides four types of storage class specifiers.

That are used to refine the declaration of a variable,

a function, and parameters.

 You can only apply the auto storage class specifier

to names of variables declared in a block or to

names of function parameters. The storage class

specifier auto is usually redundant in a data

declaration.

 By default all the data types are treated as auto class

specifiers and the default initial value is junk value

(Garbage). It is always stored in memory (RAM) &

its life is till the program control is in the block in

which variable is declared.

 The register storage class specifier indicates to the

compiler that the value of the object should reside

in a machine register keep in mind that we are only

requesting not forcing the compiler to store the

variable or object in CPU register.

 Variables with static storage class specifier have

static storage, that is only once the memory is

allocated to these objects when program‟s execution

begins & memory is freed only when the program

terminates.

 The variable declared using extern storage class

specifier are stored in memory with default zero

‘C’ Scope

initial value and continue to stay within the memory

until the execution of the program is not terminated.

 Using extern as storage specifier also enables the

user to take many functions from outside the

program or any other file, thus increasing the

degree of code reuse.

Self Review

Q1. What do you understand by scope & life of a

variable? What is the difference between two?

Q2. Explain the necessity of storage class specifiers?

Q3. What happen when variable is specified as of

register storage class & CPU doesn‟t finds free

registers?

Q4. Explain with an example how extern class storage

specifier affects degree of code reuse?

‘C’ Scope

Chapter – 9
LINKED LIST

In previous chapters we have learned about arrays (fixed

length memory storage), this method of memory allocation

can be used for certain applications you have used

previously, but there are certain other operations where the

use of this linear data structure cannot be efficient.

When we write a program we can not exactly decide the

amount of data storage, because it often depends on the

particular data being processed.

The linked-allocation method of storage can result in both

the efficient use of computer storage and time.

Linked list consists of nodes, and a node is consists of two

parts the INFO part and POINTER part (pointer means

address to the next node)

 1 2 3 4

START LAST
(a1)

Consider the list (a1) which contains the four nodes. First

node 1 can be called as start and the node number 4 can be

called as the last. The pointer part of node 1 is containing

the address of node number 2 and the pointer part of the

‘C’ Scope

node 2 is pointing to the node 3 …. . The pointer part of

node 3 is pointing to NULL. So in this way it forms a

linear linked list.

Now suppose we have EMP_CODE, NAME and AGE

 1 2 3 4

 START LAST

 6020 6060 6220 6800

In the above linked list node no. 1 is the START and node

no. 2 is residing at address 6060 so the address part of node

no. 1 will point to the address 6060 and in this way the

address part of node number 2 will point to 6220 which is

the address of address node number 3, but the address part

of node no. 4 will point to the NULL, because there is no

node existing beyond this node.

SINGLY UNSORTED LINKED LIST

We can insert a node in singly unsorted linked list.

Ex. 1.

Program for Insertion singly unsorted linked list

#include<stdio.h>

struct list {

 char name[20];

 int age;

 struct list *next;

};

‘C’ Scope

struct list

*start='\0',*last='\0',*newnode,*pt,*makenode(char *,int);

main()

{

 char nm[20];

 int i,j,k,ag;

 clrscr();

 while(1)

 {

 printf ("Enter the name : ");

 gets(nm);

 fflush(stdin);

 if((strlen(nm))==0)

 break;

 printf ("Enter the age : ");

 scanf("%d",&ag);

 fflush(stdin);

 newnode=makenode(nm,ag);

 if(!start)

 {

 start=last=newnode;

 }

 else

 {

 last->next=newnode;

 last=newnode;

 }

 }

 for(pt=start;pt;pt=pt->next)

 {

 printf ("%-20s %d\n",pt->name,pt->age);

‘C’ Scope

 }

getch()

}

 struct list *makenode(char *nm,int ag)

{

 struct list *ptr;

 ptr=(struct list *)malloc(sizeof(struct list));

 strcpy(ptr->name,nm);

 ptr->age=ag;

 ptr->next='\0';

 return(ptr);

}

DOUBLY UNSORTED LINKED LIST

Ex. 2.

Program for insertion in doubly unsorted linked list

#include<stdio.h>

struct list {

 char name[20];

 int age;

 struct list *next;

 struct list *pre;

 };

struct list *start='\0', *last='\0', *newnode, *ptr,

*makenode(char *,int);

main()

{

 char nm[20];

 int i,j,k,ag;

 clrscr();

‘C’ Scope

 while(1)

 {

 printf ("Enter the name : ");

 gets(nm);

 fflush(stdin);

 if((strlen(nm))==0)

 break;

printf ("Enter the age : ");

 scanf("%d",&ag);

 fflush(stdin);

 newnode=makenode(nm,ag);

 if(!start)

 {

 start=last=newnode;

 }

 else

 {

 last->next=newnode;

 newnode->pre=last;

 last=newnode;

 }

}

 for(ptr=start;ptr;ptr=ptr->next)

 {

 printf ("%-20s %d\n",ptr->name,ptr->age);

 }

 getch();

 printf ("REVERSE LIST : \n");

 for(ptr=last;ptr;ptr=ptr->pre)

 {

 printf ("%-20s %d\n",ptr->name,ptr->age);

‘C’ Scope

 }

 getch();

}

struct list *makenode(char *nm,int ag)

{

 struct list *ptr;

 ptr=(struct list *)malloc(sizeof(struct list));

 strcpy(ptr->name,nm);

 ptr->age=ag;

 ptr->next='\0';

 ptr->pre='\0';

 return(ptr);

}

In doubly linked list there are two pointers first point the

previous and second points to the next node

We can insert a node in doubly unsorted list.

Ex. 3.

Program for insertion in sorted doubly linked list

#include<stdio.h>

struct list {

 char name[20];

 int age;

 struct list *next;

 struct list *pre;

 };

struct list

*start='\0',*last='\0',*newnode,*ptr,*makenode(char *,int);

main()

{

 char nm[20];

‘C’ Scope

 int i,j,k,ag;

 clrscr();

 while(1)

 {

 printf ("Enter the name : ");

 gets(nm);

 fflush(stdin);

 if((strlen(nm))==0)

 break;

 printf ("Enter the age : ");

 scanf("%d",&ag);

 fflush(stdin);

 newnode=makenode(nm,ag);

 if(!start)

 {

 start=last=newnode;

 }

 else

 {

 for(ptr=start;strcmp(ptr->name,nm)<0 && ptr;ptr=ptr-

>next);

 if(ptr)

 {

 if(ptr==start)

 {

 start->pre=newnode;

 newnode->next=start;

 start=newnode;

 }

 else

 {

 newnode->pre=ptr->pre;

 ptr->pre->next=newnode;

‘C’ Scope

 newnode->next=ptr;

 ptr->pre=newnode;

 }

 }

 else

 {

 last->next=newnode;

 newnode->pre=last;

 last=newnode;

 }

 }

 }

 for(ptr=start;ptr;ptr=ptr->next)

 {

 printf ("%-20s %d\n",ptr->name,ptr->age);

 }

 getch();

}

struct list *makenode(char *nm,int ag)

{

 struct list *ptr;

 ptr=(struct list *)malloc(sizeof(struct list));

 strcpy(ptr->name,nm);

 ptr->age=ag;

 ptr->next='\0';

 ptr->pre='\0';

 return(ptr);

}

‘C’ Scope

Ex. 4.

Program for deletion in doubly linked list

#include<stdio.h>

struct list {

 char name[20];

 int age;

 struct list *next;

 struct list *pre;

 int flag=0;

 };

struct list *start='\0', *last='\0', *newnode, *ptr,

*makenode(char *,int);

main()

{

 char nm[20],dname[20];

 int i,j,k,ag;

 clrscr();

 while(1)

 {

 printf ("Enter the name : ");

 gets(nm);

 fflush(stdin);

 if((strlen(nm))==0)

 break;

 printf ("Enter the age : ");

 scanf("%d",&ag);

 fflush(stdin);

 newnode=makenode(nm,ag);

 if(!start)

 {

 start=last=newnode;

 }

‘C’ Scope

 else

 {

 for(ptr=start;strcmp(ptr->name,nm)<0 && ptr;ptr=ptr-

>next);

 if(ptr)

 {

 if(ptr==start)

 {

 start->pre=newnode;

 newnode->next=start;

 start=newnode;

 }

 else

 {

 newnode->pre=ptr->pre;

 ptr->pre->next=newnode;

 newnode->next=ptr;

 ptr->pre=newnode;

 }

 }

 else

 {

 last->next=newnode;

 newnode->pre=last;

 last=newnode;

 }

 }

 }

 for(ptr=start;ptr;ptr=ptr->next)

 {

 printf ("%-20s %d\n",ptr->name,ptr->age);

 }

 getch();

‘C’ Scope

 printf ("Enter the Name to Be Deleted : ");

 gets(dname);

 fflush(stdin);

 for(ptr=start;strcmp(ptr->name,dname)!=0 &&

ptr;ptr=ptr->next);

 if(ptr)

 {

 if(ptr==start)

 {

 start=start->next;

 ptr->next='\0';

 }

 else if (ptr==last)

 {

 last=last->pre;

 last->next='\0';

 }

 else

 {

 ptr->pre->next=ptr->next;

 ptr->next->pre=ptr->pre;

 ptr->pre='\0';

 ptr->next='\0';

 }

 }

 else

 {

 printf ("Sorry Record Not Found :\n");

 }

 for(ptr=start;ptr;ptr=ptr->next)

 {

‘C’ Scope

 printf ("%-20s %d\n",ptr->name,ptr->age);

 }

}

struct list *makenode(char *nm,int ag)

{

 struct list *ptr;

 ptr=(struct list *)malloc(sizeof(struct list));

 strcpy(ptr->name,nm);

 ptr->age=ag;

 ptr->next='\0';

 ptr->pre='\0';

 return(ptr);

}

Ex. 5.

Program for insertion in sorted singly linked list

#include<stdio.h>

struct list {

 char name[20];

 int age;

 struct list *next;

 };

struct list *start='\0', *last='\0', *pptr, *newnode, *ptr,

*makenode(char *,int);

main()

{

 char nm[20];

 int i,j,k,ag;

 clrscr();

 while(1)

 {

 printf ("Enter the name : ");

‘C’ Scope

 gets(nm);

 fflush(stdin);

 if((strlen(nm))==0)

 break;

 printf ("Enter the age : ");

 scanf("%d",&ag);

 fflush(stdin);

 newnode=makenode(nm,ag);

 if(!start)

 {

 start=last=newnode;

 }

 else

 {

 for(ptr=pptr=start;strcmp(ptr->name,nm)<0 &&

ptr;pptr=ptr,ptr=ptr->next);

 if(ptr)

 {

 if(ptr==start)

 {

 newnode->next=start;

 start=newnode;

 }

 else

 {

 pptr->next=newnode;

 newnode->next=ptr;

 }

 }

 else

 {

 last->next=newnode;

 last=newnode;

‘C’ Scope

 }

 }

 }

 for(ptr=start;ptr;ptr=ptr->next)

 {

 printf ("%-20s %d\n",ptr->name,ptr->age);

 }

 getch();

}

struct list *makenode(char *nm,int ag)

{

 struct list *ptr;

 ptr=(struct list *)malloc(sizeof(struct list));

 strcpy(ptr->name,nm);

 ptr->age=ag;

 ptr->next='\0';

 return(ptr);

}

Summary

 When we write a program we can not exactly

decide the amount of data storage, because it often

depends on the particular data being processed, so

for this purpose Linked Lists are used.

 This representation results in both the efficient use

of computer storage and time.

 Linked list consists of nodes, and a node is consists

of two parts the INFO part and POINTER part.

Self Review

‘C’ Scope

Q1. Write a program that takes the values from the user

for each node and then sort the linked list?

Q2. Write a program to implement graph, insertion

deletion & graph traversal i.e BFS & DFS

implementation?

Q3. Write a program to insert element in a sorted

Linked List?

Q4. Write a program to implement following using

linked list :-

a. Stack

b. Queue

c. Doubly Linked List

d. Tree

Q5. Write a program to implement priority queue (and

Heap) using linked list ?

‘C’ Scope

Chapter 10
FILE HANDLING

Consider the statement

FILE *fptr;

fptr = fopen(“SCOPE.TXT”,”r”);

Here fptr is a pointer requesting the operating system to

open a file scope.txt for reading purpose. If scope.txt is not

existing then a null value will be returned to the fptr.

For another example

fptr1 = fopen(“ABC.TXT”,”w”);

Here fptr1 is a pointer requesting the operating system to

open a file for writing purpose. For this abc.txt must not be

an existing file. If it is existing then it‟s contents will be

overwritten.

“r” and “w” are the file opening modes. All the file opening

modes are described with their purpose and action in

following table.

‘C’ Scope

Mode Purpose and Action

r

To open a File in Read Mode

In read mode A file must exist, if it

is not existing a null will be

returned

w To open a file in Write Mode

In write mode if a file already exist

then its contents will be

overwritten. If It does not exist a

new file will be created

r+ To open a file for reading and

writing

In r+ mode the file must already

exist

w+ To open a file for reading and

writing

In w+ mode if the file exists its

contents will be overwritten.

a To open a file to append.

In this mode if the file is existing

data will be added at the end of it.

If it is not existing it will be

created.

a+ To open a file for reading and

appending

To add the text at the end of the

text if it is not existing it will be

created.

rb To open a binary file for reading

r+b To open a binary file for read and

‘C’ Scope

write

wb To open a binary for the purpose

of writing

w+b To create a binary file for reading

and writing

ab To open a file to append in binary

mode.

a+b To append or create binary file for

reading and writing.

We can better discuss about this through following program

segment.

Tracing End Of File

We tried to incorporate reading from & wrinting into the

file but what if during reading the file end of file is reached,

as „C‟ file pointer is not intelligent enough to end reading

the file when there is no more content in the stream, it

continues to read end of file from the stream. To convince

you on this lets see an example

Ex. 1.

Program to illustrate use of file pointer pointing functions

#include<stdio.h>

void main()

{

 FILE *fp;

 int i;

 char ch;

 clrscr();

‘C’ Scope

 fp=fopen("jaya.txt","r");

 printf("\n Now pointer points at %d",ftell(fp));

 fseek(fp,1,2);

 i=ftell(fp);

 ch=getc(fp);

 printf("%ld %c",i,ch);

 i=ftell(fp);

 ch=getc(fp);

 printf("%ld %c",i,ch);

 i=ftell(fp);

 ch=getc(fp);

 printf("%ld %c",i,ch);

 i=ftell(fp);

 ch=getc(fp);

 printf("%ld %c",i,ch);

 getch();

}

#####OUTPUT#####

 Now pointer points at 0 65 65 65 65

In the above program if we are making the file pointer to

reach beyond the EOF, the file pointer *fptr and read

characters, but the pointer remains at EOF location, keeps

on reading on that location & doesn‟t go beyond that.

‘C’ Scope

To avoid the situation of reading the EOF again & again

during a loop we can give a condition !EOF reaching or can

use a function feof().

File I/O

The input and output i.e reading from a file & writing into

the file differs from ordinary input & output statements that

we use in „C‟, here the file pointer comes into play(that

points to the next memory location to be read or written

upon). There are different type of I/O statements for

streams, these are

fgetc() & fputc()

fgetc() reads a single character from the file that is

pointed by file pointer, its syntax can be

 char ch = fgetc(FILE *ptr)

Lets code an example program for this

Ex. 2.

Program for reading characters From a file

#include <stdio.h>

main()

{

 char ch;

 FILE *fr;

fr=fopen(“scope”,”r”);

if (!fr)

{

 printf (“Can not open a File. … “);

‘C’ Scope

 exit();

}

ch=getc(fr)

while (ch!=eof)

{

 printf (“%c”,ch);

 ch=getc(fp);

}

fclose(fp);

}

In above program, we have used a FILE pointer „fr‟ to open

a file in read mode. To open a file we used a function

fopen(). If there is any problem to open an existing file or it

does not find the file „scope.txt‟ then a null value will be

returned to „fr‟ and it will come out (the program will

terminate without doing anything).

After opening a file “scope.txt” in read mode we have a

function getc() which reads a character from file and

position to the next character. In this way we can read and

print all the character of a file.

At the end of program we have used a function to close the

file fclose().

Similarly we can write a program to get the characters from

standard input and put them to the file

fputc() whereas writes a single character on the file to

which file pointer is pointing on. Its syntax can be written

as

‘C’ Scope

 fputc(char ch, FILE *ptr)

example

 char ch = „j‟;

 fputc(ch,fptr);

Lets code an example program for this

Ex. 3.

Reading characters from standard input & writing them to a

file

#include <stdio.h>

main()

{

 char ch;

 FILE *fp;

 fp=fopen("scope.dat","w");

 if (!fp)

 {

 printf ("Error opening a file : ");

 exit();

 }

 else

 {

 ch=getchar();

 while(ch !='\n')

 {

 putc(ch,fp);

 ch=getchar();

 }

 fclose(fp);

 }

getch();

‘C’ Scope

}

String Based file input output

To read and write strings from/in a file we use fgets() and

fputs() functions respectively. It works similarly as fgetc()

& fputc() but rather than dealing with single characters it

deals with strings reading & writing.

The syntax of fputs() is

fputs(word,stream);

and the syntax of fgets() is

fgets(word,n,stream)

here n is the maximum number of characters can be stored

in characters string.

Ex. 4.

Program to demonstrate string reading & writing with files.

#include <stdio.h>

main()

{

 FILE *fp;

 char word[50];

 fp=fopen("scope.txt","w");

 if (!fp)

 {

 printf ("Can't Open a file Scope.txt ");

 exit();

 }

 while(1)

 {

 gets(word);

‘C’ Scope

 if (strlen(word)==0)

 break;

 fputs(word,fp);

 }

 fclose(fp);

}

/* String reading program demonstration. */

#include <stdio.h>

main()

{

 FILE *fp;

 char word[50];

 fp=fopen("scope.txt","r");

 if (!fp)

 {

 printf ("Can't Open a file Scope.txt ");

 exit();

 }

 while(1)

 {

 if((fgets(word,50,fp))==NULL)

 break;

 printf ("%s",word);

 }

 fclose(fp);

}

Till now we only tried to put the strings or characters in the

file, what if we want to put any float, integer or any

character or string in the file . For this need to be fulfilled

„C‟ provides us handsome amount of statements, these are:-

‘C’ Scope

fread() and fwrite() statements

These statements let the user, enter a structured record into

a file, also let the user retrieve the data in the file as a

record or we can say tuples.

Let us code an example for this.

#include<stdio.h>

void main()

{

 FILE *fp;

 int ch=1;

 struct student

 {

 int rollno;

 char name[15];

 float percentage;

 }s;

 clrscr();

 fp=fopen("STUDENT.DAT","w");

 while(ch!=0)

 {

 printf("\n Enter the value of rollno : ");

 scanf("%d",&s.rollno);

 printf("\n Enter the value of name : ");

 scanf("%s",s.name);

 printf("\n Enter the value of percentage : ");

 scanf("%f",&s.percentage);

 fwrite(&s,sizeof(s),1,fp);

 printf("Wanna add another record, Press

Y=1/N=0");

 scanf("%d",&ch);

‘C’ Scope

 if(ch!=1) break;

 }

 fclose(fp);

 fp=fopen("STUDENT.DAT","r");

 while(fread(&s,sizeof(s),1,fp)==1)

 printf("\n Rollno = %d Name = %s Having percentage

= %f",s.rollno, s.name, s.percentage);

 fclose(fp);

 getch();

}

#####OUTPUT#####

 Enter the value of name : kalpana

 Enter the value of percentage : 50.00

 Wanna add another record, Press Y=1/N=0 : 1

 Enter the value of rollno : 3

 Enter the value of name : mukesh

 Enter the value of percentage : 78.00

Wanna add another record, Press Y=1/N=0 : 0

 Rollno = 2 Name = kalpana Having percentage =

50.000000

 Rollno = 3 Name = mukesh Having percentage =

78.000000

fscanf() and fprintf()
If we want to save any formatted input to be entered in any

file. We can use fprintf() to enter any formatted input in

any data file. And fscanf() to read the contents of file.

‘C’ Scope

This works exactly like the inbuilt syntaxes of printf()

writing on the console screen & scanf() reading from the

console screen.

#include<stdio.h>

void main()

{

 FILE *fp;

 int ch=1,count=1;

 int r;float p;char n[15];

 clrscr();

 fp=fopen("STUDENT.DAT","w");

 printf("\n Enter the rollno : ");

 scanf("%d",&r);

 printf("\n Enter the name : ");

 scanf("%s",n);

 printf("\n Enter percentage : ");

 scanf("%f",&p);

 fprintf(fp,"%d %s %f",r,n,p);

 fclose(fp);

 fp=fopen("STUDENT.DAT","r");

 fscanf(fp,"%d %s %f",&r,n,&p);

 printf("\n Rollno = %d Name = %s Having percentage

= %f",r,n,p);

 fclose(fp);

 getch();

}

#####OUTPUT#####

 Enter the rollno : 1

 Enter the name : jaya

‘C’ Scope

 Enter percentage : 90.00

 Rollno = 1 Name = jaya Having percentage = 90.000000

That was all about the input & output statements but what

if we want to trace the position of file pointer when we

want to append records, or tell the file pointer to reach any

particular location for the purpose of appending any record.

To do the above mentioned task we have two builtin

functions named ftell() and fseek() that works respectively.

ftell()

This function return the current position of the file position

pointer. The value is counted from the beginning of the file.

long ftell (file * fptr);

fseek()

Sets the position of file pointer indicator that is associated

with the file to a new position.

fseek(FILE *ptr, long int offset, int origin)

where,

 *ptr is the file pointer associated with the given file.

Offset is how many bytes backward or forward from the

origin has to be moved

‘C’ Scope

Origin shows from where to start, it can be of three types:-

SEEK_SET 0 Seek from the start of the file

SEEK_CUR 1 Seek from the current location

SEEK_END 2 Seek from the end of the file

fseek() returns zero upon success, non-zero on failure. You

can use fseek() to move beyond a file, but not before the

beginning.

Let us see an example to that

Ex. 5.

Program to show implementation of

#include<stdio.h>

void main()

{

 FILE *fp;

 int i,roll;

 char name[10];

 float per;

 char ch;

 clrscr();

 fp=fopen("jaya.txt","w");

 printf("\n Enter the records \n");

 for(i=0;i<2;i++)

 {

 scanf("%d %s %f",&roll,name,&per);

 fprintf(fp,"%d %s %f",roll,name,per);

 }

 fclose(fp);

‘C’ Scope

 fp=fopen("jaya.txt","a");

 printf("\n Now pointer points at %d we are pointing it

at end of the file for appending more records ",ftell(fp));

 fseek(fp,+1,2);

 for(i=0;i<2;i++)

 {

 scanf("%d %s %f",&roll,name,&per);

 fprintf(fp,"%d %s %f",roll,name,per);

 }

 fclose(fp);

 fp=fopen("jaya.txt","r");

 while(!feof(fp))

 {

 ch=getc(fp);

 printf("%c",ch);

 }

 getch();

}

#####OUTPUT#####

 Enter the records

3

jaya

90.00

4

kaya

80.00

 Now pointer points at 0 we are pointing it at end of the file

for appending more records

‘C’ Scope

5

maya

70.00

6

haya

60.00

3 jaya 90.000000

4 kaya 80.000000

5 maya 70.000000

6 haya 60.000000

In the above program we are first using fprintf to print two

records in the file and close the writing operation. Now

again we are opening the same file in append mode, as we

have discussed previously that file ptr always points the

first location record in file, & employing ftell proves it in

the above program. Now if we want to append then we

need to start writing from the end fo file position now , so

we would do the needful using fseek() so as to point the

next location from EOF, & then begin appending.

At last we are reading the contents of file using fgetc() &

printing contents on console.

Categories of Files

File can be divided in two following categories

1. Text Mode

2. Binary Mode

‘C’ Scope

The difference between the two can be based on the

following characteristics.

Characteristics Text Mode Binary Mode

New Line In „C‟ line ending

is denoted by

Newline character

i.e. \n and its

ASCII value is 10.

In Binary end of

line is denoted by

two different

characters carriage

return and linefeed

i.e. \r and \n

End of File In Text Mode a

character 1A

(Hexadecimal)

indicates the EOF.

In binary It is just

any number

Ex. 5.

Program to copy a file in to another file (source.c to target.c

file)

#include<stdio.h>

void main()

{

 char ch;

 FILE *fs,*ft;

 clrscr();

 fs =fopen("source.c","r");

 ft =fopen("target.c","w");

 if(!fs)

 {

 printf("sorry file not found");

 exit();

 }

 while(1)

‘C’ Scope

 {

 ch =getc(fs);

 putc(ch,ft);

 if (ch==EOF)

 break;

 }

 fclose(fs);

 fclose(ft);

 getch();

}

OUTPUT #####

In source file the matter is

This is a book

That is published by scope computer

after execution of this program the output will also be

available in the target file

This is a book

That is published by scope computer

Ex. 6.

Program to copy source.c file into target.c in reverse order

#include<stdio.h>

void main()

{

 int m;

 char ch;

 FILE *fs,*ft;

 clrscr();

 fs =fopen("source.c","r");

 ft= fopen("target.c","w");

‘C’ Scope

 if(!fs)

 {

 printf("Sorry file not found ");

 exit();

 }

 m=-1;

 do

 {

 fseek(fs,m,2);

 ch=getc(fs);

 if (ch=='\n')

 m--;

 putc(ch,ft);

 m--;

 }while(!fseek(fs,0,1));

 fclose(fs);

 fclose(ft);

 getch();

}

Run part of above program:=

In source file we have written following matter

This is a book

That is published by scope computer

After running the above program we see the output in

target.c file in following manner

TARGET.C

retupmoc epocs yb dehsilbup si taht

koob a si siht_

Ex. 8.

‘C’ Scope

Reverse the string without reversing the word

#include<stdio.h>

void main()

{

 int m=-1,i=0;

 char ch,str[30];

 FILE *fs,*ft;

 clrscr();

 fs =fopen("source.c","r");

 ft= fopen("target.c","w");

 if(!fs)

 {

 printf("sorry file not found");

 exit();

 }

 while(!fseek(fs,0,1))

 {

 fseek(fs,m,2);

 ch =getc(fs);

 if(ch==' ' || ch ==EOF || ch== '\n')

 {

 for (i--;i>=0;i--)

 putc(str[i],ft);

 putc(ch,ft);

 if(ch=='\n')

 m--;

 i=0;

 }

 else

 {

 str[i]=ch;

 i++;

‘C’ Scope

 }

 m--;

 }

 for(i-=2;i>=0;i--)

 putc(str[i],ft);

 fclose(fs);

 fclose(ft);

 getch();

}

OUTPUT #####

In source file we have written following matter

This is a book

That is published by scope computer

After execution of the above program we see the output in

target.c file in following manner

TARGET.C

computer scope by published is that book a is this

#include<stdio.h>

void main()

{

 int i=0;

 char ch,str[30],temp,hold;

 FILE *fs,*ft;

 clrscr();

 fs =fopen("source.c","r");

 ft= fopen("target.c","w");

 if(!fs)

‘C’ Scope

 {

 printf("sorry file not found");

 exit();

 }

 hold =' ';

 while(1)

 {

 ch =getc(fs);

 if(hold==' ' || hold== '\n')

 temp=ch;

 if(ch== ' ' || ch ==EOF || ch == '\n')

 {

 str[i]='\0';

 fprintf(ft,str);

 putc (temp,ft);

 fprintf(ft,"a");

 putc(ch,ft);

 i=0;

 }

 else

 {

 if (hold!= ' ' && hold!='\n')

 {

 str[i]=ch;

 i++;

 }

 }

 hold =ch;

 if(ch ==EOF)

 break;

 }

 fclose(fs);

 fclose(ft);

‘C’ Scope

 getch();

}

Lets see another program to fulfill the above mentioned

task.

#include<stdio.h>

void main()

{

 int i=0;

 char ch,arr[30];

 FILE *fs,*ft;

 clrscr();

 fs =fopen("source.c","r");

 ft= fopen("target.c","w");

 if(!fs)

 {

 printf("sorry file not found");

 exit();

 }

 while(1)

 {

 ch =getc(fs);

 if(ch== ' ' || ch ==EOF || ch == '\n')

 {

 for(i--;i>=0;i--)

 putc(arr[i],ft);

 putc(ch,ft);

 i=0;

 if(ch == EOF)

 break;

 }

 else

‘C’ Scope

 {

 arr[i]=ch;

 i++;

 }

 }

 fclose(fs);

 fclose(ft);

 getch();

}

Another way to deal with the same problem.

#include<stdio.h>

main()

{

FILE *fp,*ft;

char ch;

fp=fopen("book.c","r");

ft=fopen("book1.c","w");

while(ch!=EOF)

{

 ch=getc(fp);

 putc(ch,ft);

}

fclose(fp);

fclose(ft);

}

The above program progresses to copy the contents of one

file into another. Till now we only did the conversation

about file handling on the Turbo C++ IDE. Now we will

discuss about Command Line arguments from the next

section.

‘C’ Scope

We know a simple to print “hello world” can be made as

given below

void main()

{

 printf(“Hello World”);

 getch();

}

Hello World

But in Turbo C++ IDE whenever we want to execute it we

have to press Ctrl+F9 or run the snippet. If we wish to

execute the program from outside the Turbo C++ IDE, &

get rid of the hazzle of again & again pressing Ctrl+F9, we

can use DOS prompt, just go at the directory where your

program EXE file is kept & run using the file name, here

my file name is ASSIGN103.C whose exe file is

ASSIGN103.EXE

#include<stdio.h>

void main(int argc, char *argv[])

{

printf("Hello World");

getch();

}

For executing it form command prompt, we can write the

following syntax, that contain .exe filename with no

arguments

C:\TURBOC~1\Disk\TurboC3\SOURCE> ASSIGN103

‘C’ Scope

Hello

Command Line Arguments

In environments that support C, there is a way to pass

command-line arguments or parameters to a program when

it begins executing. In C it is possible to accept command

line arguments as user input for the program to be

executed. Command-line arguments are given after the

name of a program in command-line operating systems like

DOS or Linux, and are passed in to the program from the

operating system.

To use command line arguments in a program, we must

first understand the full declaration of the main function,

which previously has accepted no arguments. In fact, main

can actually accept two arguments: one argument is number

of command line arguments, and the other argument is a

full list of all of the command line arguments.

The full declaration of main looks like this:

int main (int argc, char *argv[])

argc : the argument count that is the number of

arguments passed into the program from the command line,

including the name of the program.

argv[] : the argument vector, array of character

pointers is the listing of all the arguments. Or we can say it

is a pointer to an array of character strings that contain the

arguments, one per string. By default, argv[0] is the name

by which the program was invoked, so argc is at least 1.

‘C’ Scope

Lets see an example of this to practicaly understand the

topic,

Ex. 8.

Program to implement use of command line arguments as

input.

#include<stdio.h>

int main(int argc,char *argv[])

{

 int i;

 for(i=0;i<argc;i++)

 {

 printf("\n %s",argv[i]);

 }

 return 0;

}

#####OUTPUT#####

C:\TurboC++\Disk\TurboC3\SOURCE>jp_cmd scope

computers point

C:\TURBOC~1\DISK\TURBOC3\SOURCE\JP_CMD.EX

E

 scope

 computers

 point

The above program prints all the command line arguments

with a new line feed. Above we showed a simple example

of use of command line arguments, now we can code a

‘C’ Scope

program to make a copry of source file, as discussed in

previous section (using command line arguments).

Ex. 9.

Program to copy contents of one file to another file, taking

name of two files using command line arguments.

#include<stdio.h>

void main(int argc, char *argv[])

{

 char ch;

 FILE *fs,*ft;

 fs =fopen(argv[1],"r");

 ft= fopen(argv[2],"w");

 if(argc != 3)

 {

 printf("Sorry Invalid No. Of Argument:");

 printf("\n Usage : file6 <SOURCE FILE NAME>

<TARGET FILE NAME>");

 exit();

 }

 if(!fs)

 {

 printf("sorry %s file not found",argv[1]);

 exit();

 }

 while(1)

 {

 ch = getc(fs);

 if(ch == EOF)

 break;

 else

 putc(ch,ft);

‘C’ Scope

 }

 fclose(fs);

 fclose(ft);

}

Self Review

Q1. Write a program in „C‟ that takes file name and

mode from user and then perform any specific

operation depending upon the mode?

Q2. Write a program that takes command line

arguments as data that is to be written in a text file?

Q3. Write a program to save the output of one program

of „C‟ to a .txt file?

Q4. Write a program to compare contents of two files, &

tell which file has more contents according to

ASCII ?

Q5. Write a program to count the number of characters,

words, lines in a file?

Q6. Write a program to merge data of two files ,sort it &

then write the sorted data in a new file?

Q7. Write a program to implement database in file?

Q8. Write a program to merge two & make a new

merged data file that contains sorted data from two

files?

Q9. Write a program to find the size of a file?

Q10. Can we do all work using getc() & putc()?

State Yes or No? Give reasons in support of your

answer?

Q11. Explain the difference between various

input syntices of files?

‘C’ Scope

CHAPTER - 11

PREPROCESSOR

DIRECTIVES

In „C‟ programs you write the statement

#include <stdio.h>

why we write this statement ?

we will discuss this statement in three parts

 1 #

2. include

3. <stdio.h>

here # is the preprocessor directive

include is the file inclusion directive

<stdio.h> is the header file.

The meaning of preprocessor directive is to process the

attached statement before any type of processing.

Means to include the header file stdio.h file before any type

of processing.

There are certain preprocessor directives

#include

It directs the compiler to include given header file. It must

be enclosed between the pair of angular brackets of double

quotes.

‘C’ Scope

The #include directives can be used in three ways

1. #include <stdio.h>

2. #include “stdio.h”

3. #include “c:\turbo\c\stdio.h”

The first #include<stdio.h> indicates that the header file is

in it‟s default location.

The second #include “stdio.h” shows that the header file is

available in current directory.

But if it is available in any other directory then you have to

supply the path as given in point number 3.

MACRO

Like function call we can also use macro call but there is a

difference in function and macro calls.

In macro call the preprocessor blindly replace the macro

template with its macro expansion.

Simple MACRO

Consider the following program segment

#define MAX 10

#include <stdio.h>

main()

{

 int x;

for (x=0;x<MAX;X++)

In this example MAX is called as

maxro template and it‟s value can be

called as macro expansion.

‘C’ Scope

 printf (“%d\n”,x);

}

in above example writing instead 10 in the loop we are

using MAX which has already been defined in the first line

of the program.

As we compile the program first it is checked by the

preprocessor and where it finds the #define directive it

checks the entire program to search macro template and

wherever it finds the macro templates it simply replaced by

appropriate macro expansion. It does not change macro

written inside the string, such as

#define X 20

printf (“The value of X is %d”,40);

X written inside the string will not get changed.

Macro template is generally written in CAPITAL letters

(not necessarily) just to identify all the templates written in

the program.

Some other forms of MACRO substitution

MACRO with arguments

This is another form of macro which can perform more

complex tasks and is more useful

The syntax of this form is

#define macro(argument list) expansion

Never use ; at the end of macro

‘C’ Scope

Now consider the following example

Ex. 1.

Program to demonstrate use of macro(s)

#define SQUARE(I) (I*I)

#include <stdio.h>

main()

{

 int a,b;

a=10;

b=SQUARE(a)

printf (“The square of the given number is %d “,b);

getch();

}

OUTPUT #####

The square of the given number is 100

In above program the macro would be expanded like

B=(I * I)

But consider the following program

Ex. 2.

Program to implement use argumented macros

#define SQUARE(i) (I*I)

#include <stdio.h>

main()

{

 int a,b,c;

a=2;

b=3

‘C’ Scope

b=SQUARE(a+b)

printf (“The square of the given number is %d “,c);

getch();

}

OUTPUT #####

The square of the given number is 11

Which is not correct

In above example macro would be expanded because it is

blindly replaced by the template

C=SQUARE(a+b * a+B)

So, This error may be corrected as

 #define SQUARE(i) ((i) * (i))

 #include <stdio.h>

 main()

 {

 int a,b,c;

 clrscr();

 a=2;

 b=3;

 c=SQUARE(a+b);

 printf ("The square of the given number is %d ",c);

 getch();

 }

OUTPUT #####

The square of the given number is 25

In this example it would be expanded as

SQUARE = ((a+b) * (a+b))

0

‘C’ Scope

Ex. 3.

Program to find whether character is in lower case or not

using macro.

#include <stdio.h>

#define islow(chr) ((chr) >='a' && (chr) <='z') ? 1 : 0;

main()

{

 char ch;

 printf ("Enter a character : ");

 ch=getchar();

 if (islow(ch))

 printf ("It is lower case character :");

 else

 printf ("It is not a lower case character : ");

 getch();

}

Nesting Of Macros

It is possible to use a macro in the expansion of another

macro this is called as macro nesting e.g.

#define SQUARE(x) ((x) * (x))

#define CUBE(x) (SQUARE(x) * (x))

#define SIXTH(x) (CUBE(x) * CUBE(x))

In above example preprocessor directive first expand

((SQUARE(x) * (x)) * (SQUARE(x) * (x))

and then finally it is further expanded into

((((x) * (x)) * (x)) * (((x))*(x))

‘C’ Scope

i.e. x
6

There are so many library functions can be used as macros

and as true functions, these functions are defined in

various header files.

Differences between the MACROS and functions

S.No. MACRO Functions
1. A MACRO does not

check the data types

of argument passed.

So it has less error

checking facility. It

only checks the

number of argument

Arguments passed to a

function are checked for

their number and data

types.

2. We can not use a

pointer in a MACRO.

A function can use the

pointer.

3. MACRO cannot call

itself. I.e. recursion is

not possible in

MACRO

A function can call itself

i.e. recursion is possible.

4. When a MACRO is

used it is simply

replaced every time,

this may result to

unnecessarily increase

the length of the

program.

When a function is

called a same function is

used every time..

‘C’ Scope

Examples of Invalid #define directives

#define MAX 50;

Invalid

(Semicolon is allowed at the end of MACRO)

#define MAX=50

Invalid

(= Assignment operator can not be used in a MACRO)

define MAX 50

Invalid

(White space is not allowed in between # and the define

statement)

#define MAX 10 50

Invalid

(More than two values can not be used in string)

#define MAX-LEN 50

Invalid

(- symbol is not allowed in MACRO)

#define MAX 10, MIN 50

Invalid

(More than two names can not be defined at a time)

The next directive that can be used in „C‟ is #undef that is

used to undefined the previously defined macro , defined

using #define. Lets see an example:-

#define PI 3.14

void main()

{

 printf(“%f”,PI);

}

The output of above program will be :-

‘C’ Scope

3.14000

If we use #undef then

#define PI 3.14

#undef PI

void main()

{

 printf(“%f”,PI);

}

Then the code above will result an error that is undefined

symbol PI used in line 5, in printf statement.

#ifdef & #ifndef

These two directives can be used to check whether the

macro is defined previously or not, based on the result of

that condition the compiler can perform some actions.

Lets see an example of this,

#define MIN_BALANCE 1000

#ifdef MIN_BALANCE

#undef MIN_BALANCE

#endif

#ifndef MIN_BALANCE

#define MIN_BALANCE 1500

#endif

void main()

{

 printf("%d",MIN_BALANCE);

‘C’ Scope

}

The above code shows that if MIN_BALANCE is

previously defined then undefined it & redefine it with

value 1500 , Now the output of the program will be 1500.

We can also write the above code using #ifdef… #else…

#endif construct

#define MIN_BALANCE 1000

#ifdef MIN_BALANCE

 #define MIN_BALANCE 1500

#else

 #define MIN_BALANCE 1000

#endif

void main()

{

 printf("%d",MIN_BALANCE);

}

In the above code if MIN_BALANCE is defined previously

then set its value to 1500 else set it to 1000 only.

We can also use else if construct using #elif as a

preprocessor directive.

There are also many other preprocessor directives like:

1) #line :- The #line directive tells the preprocessor to

change the compiler's internally stored line number

‘C’ Scope

and filename to a given line number and filename.

Its syntax can be given as,

 #line number “filename”

2) #error :- The #error directive tells the processor to

abort the compilation process when it is found,

generating a compilation the error that can be

specified as its parameter.

 #error token_string

3) #pragma :- The #pragma directives offer a way for

each compiler to offer machine- and operating

system-specific features while retaining overall

compatibility with the C.

 #pragma token-string

Some of the pragma token_strings can be : message,

warning, alloc_text, once, pack

Summary

 The meaning of preprocessor directive is to process

the attached statement before any type of

processing.

 The include directive directs the compiler to include

given header file. It must be enclosed between the

pair of angular brackets of double quotes.

 The define directive is used to define a macro, in

macro call the preprocessor blindly replace the

macro template with its macro expansion.

 We can also nest some macros within another

macro.

‘C’ Scope

Chapter 12
STRUCTURES

Till now we have studied much about arrays and it feels

that it is enough to store data of different types. But then

why structure?

What is its use?

To answer these questions let us consider a situation where

we have to store data of say a 100 number of employees in

a company and we have to save following data of an

employee for an employer:- name, age and salary. We see

that these 3 attributes of the single entity employee are of

different data types and as per the knowledge we have,

after studying arrays, we can store all these data as

following :-

char name[20];

This is the declaration to declare array “name” for

maximum 19 width. In this array we can store the

employees name.

int age;

This indicates that we have a variable age to store the age

of the employee.

float salary;

‘C’ Scope

This indicates that we have variable salary to store the

salary of the employee.

But then these declarations will store the data of one

employee in an independent way and it will not be

connected with each other to show that it‟s a detail about

one employee.

As soon as as we enter more names, age and salary to our

records we will be ending up getting a collection of several

names, many age and different salaries but in no manners

they will be connected to each other to show which age

belongs to which employee or which salary belongs to a

particular employee.

So we see that in real world different types of data are

connected to each other and then only those data become

meaningful. So, we have to combine all these fields in a

packet such that it shows an association with each other and

for that we have to use structure as follows :-

 Structure tag

struct emp {

char name[20];

int age; Member Variables

float salary;

 }e;

 Structure Variable

Members of

the

Structure

‘C’ Scope

Now with the use of structures the 3 attributes name, age

and salary that belongs to one employee (e)

If we want to store data of more than one employee we can

use array of structures and for that the declaration will be as

follows :-

Suppose if we want to maintain the records for the students

fees system. Some fields might be like this sname, enrollno,

totalfees, class etc. for given situation structure will be

declared as

struct stud {

 char sname[20];

 int enrollno;

 int totalfees;

 int class;

 }s;

struct emp

 {

 int empno;

 int age;

 int salary;

 }e,e1,e2,e3;

Like the example given above we can name as many

variables as we want, type structure, But the problem is

aquainted where we have large number of records to be

processed, lets say if we have 1000 employees in our

company so according to the example above the last emp

‘C’ Scope

type variable will be e , starting right from e,e1….e .

Also processing of these records will be troublesome. So

for this purpose we can use Array of Structures

 Structure tag

struct emp {

char name[20];

int age;

float salary;

 }e[10];

 Structure Variable type array

Never compare two structure variables

We can also use more than one structure variable to refer

same structure template

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

 int salary;

 }e,e1,e2,e3;

The following example shows that that we assign the

values of one structure variable to another structure

‘C’ Scope

variable of same template. In this we have a structure we

have a structure definition and 2 structure variables e and

e1 and we are assigning the values of e to e1 which is

successfully works as shown in the example.

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

 int salary;

 }e,e1;

 clrscr();

 e.empno=201;

 e.age=30;

 e.salary=50;

 e1=e;

 printf ("\n%d",e1.empno);

 printf ("\n%d",e1.age);

 printf ("\n%d",e1.salary);

}

The output would be

201

30

50

You cannot compare two structure variables which shown

in the next example

‘C’ Scope

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

 int salary;

 }e,e1;

 clrscr();

 e.empno=201;

 e.age=30;

 e.salary=50;

 e1=e;

 if(e1= =e)

 printf ("values are equal");

 else

 printf ("Values are not equal");

}

This will produce an error because we are trying to

compare two structure variable e and e1 which is not

possible. Therefore, comparison of two structure variable is

an illegal operation.

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

‘C’ Scope

 int salary;

 };

Struct emp e = {230,30,4000};

we can assign values directly at the time of declaration

using the pair of curly braces.

Size of structure

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

 int salary;

 }e;

printf(size of (e));

}

In the above example the size of the structure is 6 bytes .

Array of structures

#include <stdio.h>

main()

{

 struct emp

 {

 int empno;

 int age;

 int salary;

 }e;

‘C’ Scope

/*To print a Mark sheet Using Structure */

#include <stdio.h>

main()

{

 struct stud {

 char name[30];

 char fname[30];

 int rno;

 int c,cpp,unix;

 }s[3];

 int i,total,per;

clrscr();

for (i=0;i<3;i++)

{

 printf ("Enter the Student's Name :");

 gets(s[i].name);

‘C’ Scope

 printf ("Enter the Father's Name :");

 gets(s[i].fname);

 printf ("Enter Roll Number : ");

 scanf ("%d",&s[i].rno);

 printf ("Enter the 'C' Language Marks :");

 scanf ("%d",&s[i].c);

 printf ("Enter the 'C++' Language Marks : ");

 scanf ("%d",&s[i].cpp);

 printf ("Enter the Unix Marks :");

 scanf ("%d",&s[i].unix);

 fflush(stdin);

}

clrscr();

for (i=0;i<3;i++)

{

 printf ("\nName of Student : %s Father's Name :

%s",s[i].name,s[i].f

 printf ("\n--");

 printf ("\nSubject Max.Marks Min.Marks

Obtained :");

 printf ("\n---");

 printf ("\nC Language 100 33

%d",s[i].c);

 printf ("\nC++ Language 100 33

%d",s[i].cpp);

 printf ("\nUnix 100 33

%d",s[i].unix);

 printf ("\n---");

 total=s[i].c+s[i].cpp+s[i].unix;

 per=total/3;

 printf ("\nTotal 300 99 %d",total);

 printf ("\n---");

‘C’ Scope

printf ("\n---");

 printf ("\n Percentage : %d Division = ",per);

 if (per >=60)

 printf ("First ");

 else if (per >=45)

 printf("Second ");

 else if (per >=33)

 printf ("Third :");

 else

 printf ("Failed :");

 printf ("\n\n Press Any Key to Continue :");

 getch();

 clrscr();

}

}

OUTPUT #####

Enter the Student's Name :NARENDRA BHARTI

Enter the Father's Name :SHAILESH BHARTI

Enter Roll Number : 1250

Enter the 'C' Language Marks :67

Enter the 'C++' Language Marks : 70

Enter the Unix Marks :89

Enter the Student's Name :RANJAN BHATI

Enter the Father's Name :GUNJAN BHATI

Enter Roll Number : 1251

Enter the 'C' Language Marks :56

Enter the 'C++' Language Marks : 48

Enter the Unix Marks :57

Enter the Student's Name :ATUL SHARMA

Enter the Father's Name :PRAFULL SHARMA

‘C’ Scope

Enter Roll Number : 1252

Enter the 'C' Language Marks :45

Enter the 'C++' Language Marks : 36

Enter the Unix Marks :42

Name of Student : NARENDRA BHARTI Father's

Name : SHAILESH BHARTI

--

Subject Max.Marks Min.Marks Obtained :

--

C Language 100 33 67

C++ Language 100 33 70

Unix 100 33 89

--

 300 99 226

--

Percentage : 75 Division = First

 Press Any Key to Continue :

Name of Student : RANJAN BHATI Father's Name :

GUNJAN BHATI

--

Subject Max.Marks Min.Marks Obtained :

C Language 100 33 56

C++ Language 100 33 48

Unix 100 33 57

--

 300 99 161

--

Percentage : 53 Division = Second

‘C’ Scope

 Press Any Key to Continue :

Name of Student : ATUL SHARMA Father's Name :

PRAFULL SHARMA

--

Subject Max.Marks Min.Marks Obtained :

--

C Language 100 33 45

C++ Language 100 33 36

Unix 100 33 42

--

 300 99 123

--

Percentage : 41 Division = Third :

Press Any Key to Continue :

Summary

 Structure is only a template based on which we can

have a record like schema to put detail in.

 Always place the semi colon at the end of structure

definition.

 Structure is like a

 We can use also use more than one structure

variable to refer same structure template.

‘C’ Scope

Self Review

Q1. What is the difference between structure, union &

bit field? Explain.

Q2. Write a program to make employee database file

using structure & also make it dynamically

available?

Q3. Write a program to maintain sales billing &

inventory using structures & files?

Q4. Write the various input & output statements used

for structures with files?

Q5. Write a program to implement pointer to structures

?

Q6. Write a program to implement structures using

functions?

‘C’ Scope

Operator’s Precedence Table

Position Operator Name Associativity

1
()

[]

Function

Array
Left to Right

2

+

-

++

--

!

~

*

&

sizeof

(type)

Unary Plus

Unary Minus

Increment

Decrement

Not

One‟s

Complement

Pointer

Address of

Size

Type Casting

Right to Left

3.

*

/

%

Multiply

Divide

Modulus

Left to Right

4.
+

-

Add

Subtract
Left to Right

5
<<

>>

Left Shift

Right Shift

6.

<

<=

>

>=

Less than

Less than or

Equal to

Greater Than

Greater than

or Equal to

Left to Right

7. ==
!=

Comparison

Not Equal to
Left to Right

‘C’ Scope

8. & Bitwise AND Left to Right

9 ^ Bitwise XOR Left to Right

10 | Bitwise OR Left to Right

11 && Logical AND Left to Right

12 || Logical OR Left to Right

13.
? :

Ternary

Operator
Left to Right

14. = *= /= %=

+=

-= &= ^=

|=

<<= >>=

Assignment Right to Left

15. , Comma Left to Right

‘C’ Scope

Project

